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Abstract

We develop a tractable framework to incorporate ambiguity aversion into rational
inattention. We model uncertainty using smooth ambiguity (Klibanoff, Marinacci,
and Mukerji, 2005) and define entropy-based information costs on the predictive prior
distribution. This allows us to rewrite the problem in terms of stochastic choice rules.
Our solution generalizes Matějka and McKay’s (2015) multinomial logit formula by
adding an exponential multiplicative state fixed-effect that depends on ambiguity and
the attitudes towards it. We provide an axiomatic characterization of this formula-
tion. We also study when our solution follows Luce’s (1959) multinomial logit model,
providing a new foundation robust to ambiguity aversion.
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1 Introduction

Models of rational inattention, where individuals trade-off between processing more
information to improve decisions and saving on the mental effort, assume a well-
defined prior probability over the possible states of the world. However, the most
interesting cases of information processing arise when data is complex to analyze,
e.g., demand’s idiosyncratic conditions (Mackowiak and Wiederholt, 2009), portfolio
choice with multiple assets (Mondria, 2010), or future values of risky assets (Van
Nieuwerburgh and Veldkamp, 2010). These are precisely the situations where it is
reasonable to expect that individuals may fail to have a well-defined belief over the
possible states of the world and may instead be ambiguity averse. How does optimal
information processing change if we allow for ambiguity averse preferences?

Our model enriches the rational inattention (RI) framework by incorporating am-
biguity considerations in a tractable way. Before choosing, a decision maker (DM)
costly processes information about an unknown payoff-relevant state, drawn accord-
ing to an unknown probability distribution. We model uncertainty using smooth
ambiguity (Klibanoff, Marinacci, and Mukerji, 2005), which allows us to distinguish
between the degree of perceived ambiguity and attitudes towards it. This modeling
approach allows us to define an entropy-based information processing cost in terms
of the average prior distribution, which we refer to as predictive,1 providing a way to
generalize Sim’s (2003) cost function to settings where multiple probability distribu-
tions, or models, are possible. Our first result (Lemma 1) shows we can simplify this
information problem with both RI and ambiguity aversion by equivalently writing it
in terms of stochastic choice rules, i.e., choice probabilities conditional on each state.

Illustrative example. Consider two urns: Urn 1 contains only red balls; Urn 2 an
unknown proportion of green and purple balls. One ball is drawn randomly from one
urn, and its color represents the payoff-relevant state. The DM can costly process
information about the color drawn before choosing between RG, which yields a payoff
of 1 if the drawn ball is either red or green, and P , which yields a payoff of 1 if purple.

First, assume that the individual follows expected utility. Notice that the states
“red ball” and “green ball” are payoff-equivalent, as they yield the same payoff action-

1As the smooth ambiguity model ascribes two levels of uncertainty, i.e., the first on payoff-
relevant states and the second on the possible models governing them, we can define a predictive
prior distribution over states by averaging the weight assigned to each state by every model.
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red ball green ball purple ball
RG 1 1 0
P 0 0 1

Figure 1: Illustration of the problem with two urns.

wise. Since, under expected utility, information has only instrumental value, the DM
would never waste cognitive resources to distinguish between them. As a result, the
DM exhibits the same behavior conditional on both “red ball” and “green ball”. More
formally, this implies

PpRG|red ballq
Pp P |red ballq

“
PpRG|green ballq
Pp P |green ballq

meaning that the probability of betting on the red or green ball compared to the
purple ball is unaffected by conditioning on the state “red ball” or “green ball”. This
property summarizes the content of Axiom 1 by Matějka and McKay (2015) and
invariance under compression (IUC) by Caplin et al. (2022).

Adding ambiguity aversion changes these considerations. A DM that decides how
much attention to pay to the state “green ball,” reflected in the probability of choosing
the optimal bet RG, should recognize that this state is related to “purple ball” through
Urn 2, which is not the case for “red ball.” That is, attention allocation serves as an
instrument to hedge against the ambiguity induced by each state. As “red ball” and
“green ball” induce different distributions on models, i.e., a Dirac measure on Urn 1
and Urn 2, respectively, they are not information-equivalent : An ambiguity averse
DM may find it optimal to differentiate between them while processing information.

Main result. Our main result (Theorem 1) enriches Matějka and McKay’s (2015)
solution of the expected utility case by incorporating preferences for hedging against
ambiguity. The behavior of a rational inattentive, ambiguity averse decision maker
follows a biased multinomial logit model

Ppaction a|state sq “
exprppaq ` Ipsq ¨ upa, sq{λs

ř

bPA exprppbq ` Ipsq ¨ upb, sq{λs
(1)
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where: upa, sq is the payoff associated with action a in state s; λ is the unit cost of
information; p and I, which depends on ambiguity, capture fixed-effects associated
with actions and states, respectively. In particular:

• The ratio upa, sq{λ represents the fundamental RI trade-off, stating that the prob-
ability of playing action a in state s is positively affected by the payoff associated
with the action in that state but negatively by the information costs.

• The function p, as in Matějka and McKay (2015), represents the a priori proba-
bility of choosing each action. Specifically, if an action is a priori more appealing,
it will be chosen more often in each state.

• The function I ě 0 is novel and pertains to ambiguity aversion. It measures the
states’ information value by evaluating the information each provides about possi-
ble models. Notably, in the absence of ambiguity or with neutral attitudes towards
it, I reduces to 1, and equation (1) collapses to the Matějka and McKay’s (2015)
solution. For every state s with Ipsq ě 1, we can view I as amplifying the value of
the ratio Ipsq ¨up¨, sq{λ relatively to the expected utility case, positively impacting
the attention paid at s. Therefore, ambiguity aversion influences through I the
incentives to pay attention to specific states by modifying their rewards.

Next, we characterize (Propositions 1 and 2) the states that receive more (less)
attention as the ones associated with models that yield lower (higher) expected util-
ities. This result implies that ambiguity averse DMs manipulate their attention to
hedge against uncertainty, re-balancing the information process by allocating more
attention in favor of states associated with lower expected utility levels. Furthermore,
we show (Corollary 2) that if one state has a higher information value than another
state, signals about it are more precise.

Foundations. We discuss two behavioral implications of our model. First, as il-
lustrated by the example above, adding ambiguity aversion leads to violations of
invariance under compression (IUC).2 However, we show (Proposition 3) that it sat-
isfies a weaker form that requires “compression” for states that are both payoff and
information-equivalent, that is, have the same information value. Second, we prove

2This implies that the result by Caplin et al. (2022) stating that IUC characterizes entropy-based
information costs in the larger class of posterior separable costs is not robust to ambiguity aversion.
Therefore, IUC uniquely identifies entropy-based information under expected utility.
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(Proposition 6) that RI with ambiguity aversion is unaffected by Debreu’s (1960)
criticism of Luce’s (1959) multinomial logit model, which states that adding a dupli-
cate action can affect the choice probabilities of non-duplicate actions. This result
conforms with the one of Matějka and McKay (2015) for the expected utility case.

We investigate the conditions under which our solution (1) collapses to Luce’s
(1959). Under expected utility, Matějka and McKay (2015) show that this happens
when actions are a priori homogeneous, i.e., ex-ante indistinguishable payoff-wise.
This is no longer sufficient under ambiguity aversion, as we further need to restrict
states’ information value, which influences their associated rewards.3 However, under
an additional condition restricting the set of possible models, this influence occurs
homogeneously, and we show (Proposition 4) that the solution of RI with ambiguity
aversion follows Luce’s multinomial logit model. As we do not restrict preferences for
uncertainty, this result provides a micro-foundation that is robust to any ambiguity
aversion level.4 We also show (Corollary 1) that the same result holds for maxmin
preferences (Gilboa and Schmeidler, 1989).

Next, we provide an axiomatic foundation for the solution (1). As discussed above,
our model violates Axiom 1, one of the two axioms of Matějka and McKay (2015),
implying that, also under RI, ambiguity averse and expected utility behavior are dis-
tinguishable. To assess whether a DM’s choices are compatible with RI for some
ambiguity aversion level, we take the perspective of an analyst who constructs statis-
tics using the available data, composed solely of stochastic choice rules, to represent
the elements p, u, and I in equation (1). We characterize (Theorem 2) the properties
stochastic rules must satisfy to allow this construction. In particular, we generalize
Axiom 1 of Matějka and McKay (2015) to account for ambiguity averse behavior, and
keep their Axiom 2, that requires duplicates to be treated as a single action.

We discuss additional results related to our model. First, by restricting ambiguity
attitudes to constant absolute ambiguity aversion (CARA), we show (Proposition 5)
that the average of the information values of each state equals 1, implying that not
all states can amplify or dampen their associated rewards compared to the expected
utility case. Second, we modify the information processing domain, allowing the DM
to pay costly attention to models and not states. We show that this framework can
be represented as RI under expected utility.

3Under ambiguity aversion, the reward associated with action a in state s is Ipsq ¨ upa, sq, where
Ipsq may differ from one.

4Assumption 1 restricts ambiguity attitudes to ensure that the optimization problem (2) faced by
the DM is convex. Our result is robust to any ambiguity aversion level that satisfies this assumption.
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Related Literature. We contribute directly to the literature on rational inattention
initiated by Sims (2003). This paper generalizes the model of Matějka and McKay
(2015) by incorporating ambiguity aversion: Our solution collapses to theirs if the DM
is ambiguity neutral or only one model is possible. We show how to strengthen their
condition of a priori homogeneity to obtain Luce’s (1959) multinomial logit model for
any ambiguity aversion level. Furthermore, we weaken their Axiom 1 to characterize
rationally inattentive behavior under ambiguity aversion.

The concurrent work of Hansen et al. (2022) studies RI with model misspecifica-
tion. However, our approach differs from theirs as they study robustness by assuming
variational preferences (Maccheroni, Marinacci, and Rustichini, 2006), while we incor-
porate ambiguity attitudes using the smooth model by Klibanoff et al. (2005). This
difference has substantive implications: As smooth ambiguity quantifies the uncer-
tainty over models, we can define an entropy-based information cost on the predictive
prior distribution, making the cost independent from preferences. As a result, the
solution of Hansen et al. (2022) follows the multinomial logit formula by Matějka and
McKay (2015) according to some worst-case prior, while our solution differs from it by
adding an exponential multiplicative state-fixed effect. At the behavioral level, this
difference has bite as our solution implies a violation of Axiom 1, which is instead
satisfied in their case for the worst-case prior. Besides this difference, their study
complements ours by discussing different results concerning RI and robustness.

We explore the assumption of invariance under compression (IUC), introduced
by Caplin et al. (2022). In particular, we show that an ambiguity averse DM vi-
olates it unless the compression occurs for both payoff and information-equivalent
states, a property that we call weak invariance under compression. In experimental
tests of rational inattention, Dean and Neligh (2023) show that subjects violate IUC,
suggesting that some states are harder to investigate than others. Our model re-
lates state-dependent information costs to ambiguity aversion. Other relevant works
are Caplin and Dean (2013) and Caplin et al. (2019), which, as in our axiomatic
characterization, tackle RI in terms of induced posterior distributions.

One of our results allows us to rewrite RI with smooth ambiguity in terms of
stochastic choice rules, i.e., maps from states to distribution over actions, which
we can interpret as acts in the standard decision theory sense. For this reason,
our ambiguity preferences can be represented by a static model, which contributes
to making our analysis tractable, as dynamic ambiguity models suffer either from
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dynamic inconsistencies or inconsequential updating (Epstein and Schneider, 2003;
Hanany and Klibanoff, 2007, 2009; Siniscalchi, 2011).

Finally, our work fits into the literature on ambiguity and information. Li and
Zhou (2016) shows that our preferences satisfy the Blackwell order. Auster et al.
(2024) and Epstein and Ji (2022) investigate dynamic information acquisition under
ambiguity. Differently from us, they assume that information costs are not entropy-
based but time-dependent. Lu (2021) studies random choices resulting from exoge-
nous shocks to information and ambiguity aversion. We also study random choice
under ambiguity aversion, but our source of stochasticity is endogenous information
processing. Denti and Pomatto (2022) provide necessary and sufficient conditions for
smooth ambiguity preferences to be statistically identifiable. One of our conditions in
Proposition 1 meets their requirements. Mele and Sangiorgi (2015) apply information
acquisition with ambiguity to study asset markets. Battigalli et al. (2015) study the
effect of ambiguity on experimentation in the context of self-confirming equilibrium.
Other related works at this intersection are Li (2020) and De Oliveira et al. (2021).

2 Model

Before choosing an action from a finite set A, the decision maker (DM) can costly
process information about an unknown payoff-relevant state θ P Θ, which is drawn
from a finite set according to the unknown probability distribution π P ∆pΘq. We
refer to elements in ∆pΘq as models and allow the DM to form a prior distribution
on them, µ P ∆p∆pΘqq with Π :“ suppµ. For every state θ P Θ, define the predictive
distribution as ρpθq :“ Eµrπpθqs. It captures the expected probability of each state
and plays a key role in our model as we use it to compute the information costs.
Assume ρ has full support, a condition that holds if, for every θ P Θ, there exists a
π P Π such that πpθq ą 0. Denote by X an arbitrary finite set of signals.5

An attention strategy σ “ pF, αq is a pair composed of:

1. An information structure F : Θ Ñ ∆pXq that associates each state with a distri-
bution of signals,6

5The restriction to finite actions, signals, and states is convenient as it allows us to avoid measur-
ability issues and ease the exposition. Our results extend to standard continuous models following
the techniques of Csiszár (1974) and Denti et al. (2020).

6Even if we allow for arbitrary (finite) signal spaces, the information structure is still constrained
by its domain. That is, the DM can process information about payoff-relevant states but not about
other features, such as the models. For example, in the two urns illustration in the introduction, the
DM can consult statistics to assess the color of the drawn ball but cannot ask for additional i.i.d.
draws, as they provide information about the urn composition, and not about the state.
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2. An action plan α : X Ñ A that denotes which action to implement after each
signal realization.7

Following the literature on rational inattention initiated by Sims (2003), we as-
sume that information processing costs are entropy-based. The entropy of a proba-
bility distribution p P ∆pSq, defined over a finite set S, is

Hppq :“
ÿ

sPS

ppsq log ppsq.

The cost associated with the information structure F : Θ Ñ ∆pXq is proportional
to the average reduction in entropy between unconditional and conditional predictive
distributions

cpρ, F q :“ λ
`

Hpρq ´ ExrHpρp¨|xqqs
˘

,

where λ ě 0 is the unit information cost, and ρp¨|xq P ∆pΘq denotes the posterior
predictive distribution associated with signal x P X. That is, processing information F
is more costly if the difference between the uncertainty ex-ante and ex-post, measured
respectively as the entropy of the predictive distributionHpρq and the average entropy
of each predictive posterior Hpρp¨|xqq, is larger.

The DM may feature ambiguity aversion when multiple models are possible, i.e.,
|Π| ą 1. Each action a P A is evaluated according to the smooth ambiguity certainty
equivalent, expressed in utils, by Klibanoff et al. (2005)

V pϕ,µq
paq :“ ϕ´1

¨

˚

˝

Eµ

»

–ϕ

˜

ÿ

θPΘ

upa, θqπpθq

¸

fi

fl

˛

‹

‚

where u : A ˆ Θ Ñ R is the utility function, and ϕ : coupA ˆ Θq Ñ R is a strictly
increasing, concave, and smooth function that represents the DM’s ambiguity atti-
tudes.8 Recall that linearity of ϕ implies ambiguity neutrality while strict concavity
implies ambiguity aversion.

7Choosing an action plan amounts to commit to an action for each possible signal realization,
ensuring the ex-ante value of the information problem. As non-expected utility preferences may fail
to be dynamically consistent, the ex-ante and ex-post information values may differ. For instance,
in the absence of commitment, an ambiguity averse DM can reject freely available information, as
shown by Siniscalchi (2011). The commitment assumption allows us to study the benefits of ex-ante
information processing freed from the considerations concerning dynamic inconsistency.

8Here, coupA ˆ Θq is the smallest closed interval containing the image of the function u, and
smooth means at least four times differentiable.
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Definition 1. The rational inattention problem with smooth ambiguity is

max
pF, αq

ϕ´1

¨

˚

˝

Eµ

»

–ϕ

˜

ÿ

θPΘ

ÿ

xPX

upαpxq, θqF px|θq πpθq

¸

fi

fl

˛

‹

‚

´ cpρ, F q. (2)

To sum up, the DM chooses an information structure F that affects the entropy
costs and the expected utility of every model π P Π, calculated following the action
plan α : X Ñ A. The DM evaluates these expectations with the smooth function ϕ,
which then aggregates using the prior µ. Finally, the DM normalizes the ambiguous
utils obtained by ϕ´1. Define this certainty equivalent as V pϕ,µqpF, αq.

Definition 1 subsumes two relevant modeling assumptions:

piq Information costs do not depend on ambiguity attitudes and are affected by the
prior over models, µ P ∆pΠq, only through the predictive distribution, ρ P ∆pΘq.
This implies that the information processing cost is ambiguity-less, capturing the
idea that ambiguity averse and expected utility agents face identical entropy costs
as long as they share the same predictive distribution.

piiq Information processed about payoff-relevant states, F : Θ Ñ ∆pXq, does not up-
date the prior over models, guaranteeing that no model can be discarded as a
result. This, together with the commitment to a signal-contingent action plan,
ascribes V pϕ,µq to the class of certainty equivalents studied by Li and Zhou (2016)
that satisfy the Blackwell’s informativeness ranking over information structure.9

If this property failed, utility and attention incentives would be misaligned: Pro-
cessing Blackwell’s more valuable information would cost more in terms of entropy
without providing any utility benefit, which conflicts with the interpretation of
entropy-based costs being cognitive.

Furthermore, as formalized by Lemma 1, the combination of commitment to an action
plan, points piq and piiq above, improves the tractability of the problem, by, respec-
tively, reducing the information decision to a static one, simplifying how uncertainty
resolves, and allowing an equivalent formulation in terms of stochastic choice rules.

9The information structure F is Blackwell more informative than G if there exists a stochastic
kernel T : X Ñ ∆pXq such that G “ FT . By Li and Zhou (2016), we have that F is Blackwell more
informative that G if and only if V pϕ,µqpF, αq ě V pϕ,µqpG,αq for every α, µ, and concave ϕ.
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2.1 Preliminary Results

As a first step, we restate RI with smooth ambiguity (2) in terms of conditional choice
probabilities rather than attention strategies. Intuitively, the choice of an information
structure suffices to describe a solution to the problem by identifying each signal
with the “recommendation” to play the corresponding optimal action. Formally, we
introduce a stochastic choice rule f : Θ Ñ ∆pAq which assigns a distribution over
actions, denoted by fp¨|θq, to each state θ P Θ. A strategy σ “ pF, αq generates the
stochastic choice rule f if, for every a P A and θ P Θ,

fpa|θq “ Pptx P X : αpxq “ au|θq “
ÿ

xPXa

F px|θq

where Xa :“ tx P X : αpxq “ au is the set of signals associated with action a

by the action plan α. Conversely, every stochastic choice rule f induces a strategy
pF, αq by identifying each action with a signal realization in X and then equating the
probability of each signal realization to the probability of the corresponding action.

We denote by f 0 the expected unconditional probability of playing action a

f 0
paq :“

ÿ

θPΘ

fpa|θqρpθq.

Furthermore, the stochastic choice rule f associates each model π P Π with the
expected utility

Upπ, fq :“
ÿ

θPΘ

ÿ

aPA

upa, θqfpa|θqπpθq.

The following result, which generalizes an equivalent one under expected utility
in Matějka and McKay (2015), shows that the optimal strategy and its generated
stochastic choice rule induce the same payoff to the DM. This implies that it is
without loss to focus on stochastic choice rules to characterize the optimal solution.

Lemma 1. If the attention strategy σ solves RI with smooth ambiguity (2), then the
corresponding stochastic choice rule f solves

max
f

ϕ´1

ˆ

Eµ

”

ϕ
`

Upπ, fq
˘

ı

˙

´ cpf, ρq “: V pfq ´ cpf, ρq. (3)

Conversely, any stochastic choice rule that solves (3) induces an attention strategy
that solves RI with smooth ambiguity (2).
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The proof of Lemma 1 shows, by the convexity of entropy-based costs, that optimal
information processing never induces different posteriors, obtained by updating the
predictive distribution, conditional on signals recommending the same action, i.e., for
every x1, x2 P Xa, we have ρp¨|x1q “ ρp¨|x2q. This establishes a one-to-one relationship
between actions and predictive posteriors, and the lemma follows by the symmetry
of the cost function.

Equation (3) sheds light on the static nature of our model, an implication of
commitment to an action plan and the previously introduced assumptions piq and
piiq. We can interpret any stochastic choice rule f : Θ Ñ ∆pAq as an act, that
is, a function that maps every state to a probability distribution over a finite set
of consequences A. Under this interpretation, V pfq is the value that the smooth
ambiguity model with parameters pµ, ϕq associates to act f . Furthermore, we can
see f 0 P ∆pAq as a constant act, describing the ex-ante expected consequences of
implementing act f . The cost

cpf, ρq :“ λ
`

Hpf 0
q ´ EρrHpfp¨|θqqs

˘

penalizes behavior diversification, by measuring, in entropy terms, the extent to which
the act f induces, on average, a different distribution of consequences for every state.
The following example illustrates this interpretation.

Example 1. Consider the following payoff structure

θ1 θ2

a 1 0
b 0 1

where the rows are actions, the columns are states, and the matrix entries represent
the payoffs. Let ρ “ 1{2. Define the acts f1, f2 : Θ Ñ ∆pAq as follows

f1pa|θ1q “ f1pb|θ2q “ 1 ´ ε

f2pa|θ1q “ f2pb|θ2q “ 1{2

for ε P r0, 1{2q. In words, f1 prescribes the optimal action in each state with proba-
bility 1 ´ ε, while f2 randomizes uniformly. By monotonicity, any ambiguity averse
DM that can diversify behavior across states without incurring any cost, i.e., λ “ 0,
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prefers f1 over f2. However, if λ ą 0 is sufficiently high, distinguishing the states may
be too costly and f2 may be preferred.

To see this, notice that the acts f1 and f2 induce the same a priori constant act,
i.e., f 0

1 “ f 0
2 “ 1{2, which coincides with f2. Therefore, the act f2 is costless in

entropy terms. On the other hand, the cost of the act f1 is:

cpf1, ρq “ λ
`

logp1{2q ´ pε logp1 ´ εq ` p1 ´ εq logpεqq
˘

ą 0 “ cpf2, ρq

for every λ ą 0. Therefore, for every smooth parameter pµ, ϕq, there exists a threshold
of unit cost λ ą 0 such that f2 is preferred over f1. đ

One issue with RI with smooth ambiguity (3) is that it may not constitute a convex
optimization problem, even under ambiguity aversion. We circumvent this issue by
restricting the ambiguity attitudes. The following assumption, due to Hardy et al.
(1934) and Hennessy and Lapan (2006), characterizes concave certainty equivalents.
We require it holds throughout the remainder of the paper.

Assumption 1. The reciprocal of the Arrow-Pratt coefficient of absolute ambiguity
aversion, 1{rpvq :“ ´ϕ1pvq{ϕ2pvq, where v P coupA ˆ Θq, is concave.

While Assumption 1 is stronger than requiring strict concavity of ϕ, it is satisfied
by most preferences used in applications. In particular, it holds for constant absolute
ambiguity aversion (CARA), which nests variational preferences (Maccheroni et al.,
2006), and constant relative ambiguity aversion (CRRA).10

Lemma 2. If Assumption 1 is satisfied, then RI with smooth ambiguity (3) is a
convex optimization problem.

Lemma 2 implies the Karush-Kuhn-Tucker conditions are necessary for optimality,
while the finiteness of A and Θ ensures the existence of an optimal solution. How-
ever, uniqueness is not always guaranteed, as a trivial multiplicity may arise due to
redundancies in the payoff structure.11

10If 1{rpvq is linear, and hence Assumption 1 holds, then ϕ satisfies hyperbolic absolute ambiguity
aversion (HARA),

ϕpxq “
1 ´ γ

γ

ˆ

κx

1 ´ γ
` η

˙γ

for κ ą 0,
κx

1 ´ γ
` η ą 0. CARA is obtained when γ goes to infinity, CRRA when η “ 0.

11See the paragraph on duplicate actions in section 5 or Matějka and McKay (2015) for a discussion.
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3 Solution

Our main result characterizes the stochastic choice rule that solves RI with smooth
ambiguity (3). The solution extends the multinomial logit formulation of Matějka
and McKay (2015) by incorporating ambiguity considerations.

Theorem 1. If λ ą 0, the stochastic choice rule f that solves RI with smooth
ambiguity (3) satisfies

fpa|θq “
f 0paq exprupa, θq ¨ Iθpfq{λs

ř

bPA f
0pbq exprupb, θq ¨ Iθpfq{λs

(4)

where
Iθpfq :“

Eµθ
rϕ1pUpπ, fqqs

ϕ1pV pfqq
(5)

and µθp¨q :“ µp¨|θq P ∆pΠq. If λ “ 0, then in each state the actions that yield the
highest utility are chosen with probability one.

Theorem 1 generalizes the RI decision problem allowing for non-neutral ambiguity
attitudes. If only one model is possible or if the DM is ambiguity neutral, i.e., |Π| “ 1

or ϕ is linear, respectively, then Iθp¨q “ 1 for every state θ P Θ.12 Thus, equation (4)
simplifies to

fpa|θq “
f 0paq exprupa, θq{λs

ř

bPA f
0pbq exprupb, θq{λs

(6)

which is the solution found by Matějka and McKay (2015). In this case, for every
action a P A and state θ P Θ, fpa|θq follows an extended multinomial logit. The DM
plays more often the actions that are a priori more appealing, as captured by f 0paq.
The exponential term is evaluated at upa, θq{λ, which constitutes the RI trade-off
between utility gains and information costs.

Adding ambiguity aversion enriches the standard solution by multiplying the ar-
gument in the exponential term by Iθpfq ě 0. Following equation (5), Iθpfq can
be interpreted as the information value of state θ P Θ given the stochastic choice
rule f . The expectation at the numerator of equation (5) is taken with respect to
the probability distribution µθ P ∆pΠq, obtained by updating the prior µ P ∆pΠq

12If Π “ tπu, Eµθ
rϕ1pUpπ, fqqs “ ϕ1pUpπ, fqq “ ϕ1pV pfqq, and if ϕ is linear, ϕ1 “ k for some k P R.
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conditional on the state θ P Θ,13 which represents DM’s ambiguity perception be-
fore choosing fp¨|θq P ∆pAq. The denominator of (5) is constant across states and
serves as a normalization. Therefore, if ϕ is concave, then ϕ1 is decreasing, which
implies that we have a lower (higher) value of Iθpfq when µ gives higher (lower)
weight to models associated with high expected utility. As a result, Iθpfq modifies
the standard RI trade-off for state θ, by increasing (decreasing) the attentional re-
ward ũp¨, θq :“ up¨, θq ¨Iθpfq if µθ places more (less) weight on models featuring lower
(higher) levels of expected utility. The desire to hedge against ambiguity affects in-
formation processing by providing incentives to pay more (less) attention to states
associated with lower (higher) expected utility levels.

We say that state θ P Θ is of high information value if Iθ ě 1, and of low in-
formation value otherwise. This captures the idea that if a state has a high (low)
information value, then any ambiguity averse DM has stronger (weaker) incentives
to pay attention to it compared to an expected utility agent, i.e., ũpa, θq ě upa, θq

(ũpa, θq ď upa, θq) for every action a P A. The following result formalizes the previ-
ous discussion by characterizing states with high information value in terms of their
associated expected payoff. As it relies on the curvature of ϕ1, recall that ϕ is prudent
when ϕ1 is convex, and imprudent when ϕ1 is concave.

Proposition 1. Let θ P Θ, and f be a stochastic choice rule.

piq Iθpfq ě 1, i.e., the state θ has high information value,

piiq Eµθ
rUpπ, fqs ď V pfq.

If ϕ is prudent, piiq implies piq, while if ϕ is imprudent piq implies piiq. Furthermore,
the two statements are equivalent if the support of µθ is a singleton for every θ P Θ.

Point piiq reads that the expected utility of the problem calculated using the
distribution over models µθ P ∆pΠq induced by the state θ P Θ is lower than the
corresponding certainty equivalent. It suggests that θ P Θ is a “bad state” as it
ex-post reduces the ex-ante value of the problem.

When the support of µθ is a singleton for every state θ P Θ,14 characterizing high
information value states is relatively straightforward. In this case, the equivalence

13Formally, µθpdπq :“ µpdπ|θq “
πpθq

ρpθq
µpdπq for every π P Π, θ P Θ.

14Although restrictive, this condition is met by the identifiable smooth model by Denti and Po-
matto (2022).
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between piq and piiq formalizes the idea that states with high (low) information value
are associated with models that yield lower (higher) expected utility levels. However,
in more general cases, this relation depends on the curvature of ϕ1. In particular,
if ϕ1 is prudent, then any “bad state” θ is associated with a high information value,
thus increasing ũp¨, θq compared to the expected utility case. It is still possible that
some “good state” receives the same attentional reward. On the other hand, if ϕ1 is
imprudent then every “good state” θ, defined as Eµθ

rUpπ, fqs ě V pfq, is associated
with low information value, but also some “bad state” may. Interestingly, point piq

and piiq are again equivalent if ϕ is both prudent and imprudent, i.e., ϕ1 is linear.
Next, we formalize the precise sense in which ambiguity aversion induces the DM

to pay more attention to states with high information value. Stating the result re-
quires additional notation. Denote by fϕ and f 0,ϕ the stochastic choice rule and
unconditional probability over actions, respectively, that solve problem (3) when am-
biguity attitudes are ϕ. For every action a P A, the corresponding predictive posterior
ρϕp¨|aq P ∆pΘq, that is, the probability distribution over states given the “recommen-
dation” to play a, is obtained by Bayes rule

ρϕpθ|aq :“
fϕpa|θqρpθq

f 0,ϕpaq
.

Notice that the predictive posterior under ambiguity neutrality ρid is equivalent to
the one obtained in the expected utility case.

Proposition 2. Let θ P Θ, and fϕ be a stochastic choice rule associated with
ambiguity attitudes ϕ. The following are equivalent:

piq Iθpf
ϕq ě 1,

piiq For every action a, b P A with upa, θq ě upb, θq we have that

ρϕpθ|aq

ρϕpθ|bq
ě
ρidpθ|aq

ρidpθ|bq
ě 1.

We can separate point piiq into two statements. The first says that, as for the
expected utility case, if action a P A is preferred over action b P B at state θ P Θ, then
any ambiguity averse DM processes information such that the “recommendation” to
play a is more informative about θ than the “recommendation” to play b. The second
says that the informativeness of the “recommendation” to play a compared to b is
higher under ambiguity aversion than expected utility.
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The equivalence of piq and piiq implies that an ambiguity averse DM pays more
(less) attention to states with high (low) information value by generating “signals”
that induce more (less) favorable posterior distributions than under expected utility.

To show Proposition 2, we apply Theorem 1 to obtain

ρϕpθ|aq

ρϕpθ|bq
“

ˆ

exprupa, θq{λs

exprupb, θq{λs

˙Iθpfϕq

(7)

which expresses the posterior ratio at state θ P Θ, conditional on the “recommen-
dations” to play a, b P A, in terms of the corresponding payoff incentives, attention
costs, and information value. Equation (7) generalizes the corresponding one under
expected utility by allowing Iθp¨q ‰ 1.

Together, Proposition 1 and 2 formalize how information processing serves to
hedge against ambiguity. They imply that any prudent (imprudent) ambiguity averse
DM pays, in the sense of Proposition 2, more (less) attention to states associated with
low (high) expected utility levels.

3.1 Invariance Under Compression

Caplin et al. (2022) show that the behavior of a DM with entropy-based information
cost satisfies invariance under compression (IUC). Roughly, this axiom requires that
if two states are payoff-equivalent, that is, they yield the same payoff for every action,
it is never optimal to waste attention trying to distinguish them. They also show that,
under expected utility, the entropy-based information cost is the only specification
within the class of uniformly posterior separable cost functions15 that satisfies IUC.
Compression of payoff-equivalent states may not be optimal under ambiguity aversion,
as the information value of each state additionally influences information processing.

The states θ1, θ2 P Θ are payoff-equivalent if upa, θ1q “ upa, θ2q for every a P A.
We capture the essence of invariance under compression with the following definition.

Axiom (IUC). If θ1, θ2 P Θ are payoff-equivalent, then fp¨|θ1q “ fp¨|θ2q.

IUC says that DM’s behavior is invariant to payoff-equivalent states, which implies
that choices are unaffected by changes in the state space that do not impact payoffs.
However, as the following example illustrates, IUC is not satisfied under ambiguity.

15An information cost function k is uniformly posterior separable if

kpρ, F q “ λ
`

Gpρq ´ ExrGpρp¨|xqqs
˘

for some strictly concave and continuous G : ∆pΘq Ñ R. If k is entropy-based then G “ H.
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Example 2. Consider the following payoff structure.

θ1 θ2 θ3
a 3 3 -y
b 2 2 0

Let y ą 0 be such that f 0paq, f 0pbq ą 0, that is, both actions are played with positive
probability. The collection of possible models is tπ1, π2u where π1 “ p1, 0, 0q and
π2 “ p0, 1{4, 3{4q; the prior is µ “ p1{3, 2{3q.

Notice that, similarly to the illustrative example in the introduction, the model π1
only predicts the state θ1, while the model π2 both states θ2 and θ3. Upon deciding the
optimal plan of action conditional on state θ2, the agent correctly infers that π2 is the
true model and, therefore, that the state θ3 may occur as well. This argument does
not apply to planning conditional on state θ1, generating incentives to distinguish
the payoff-equivalent states θ1 and θ2 while processing information. For instance,
planning at θ1 is unaffected by the value of y, while it affects planning at θ2: The
higher the value of y, the costlier the mistake of choosing a when the state is θ3.

Formally, since the states θ1 and θ2 are payoff-equivalent, IUC requires that
fpa|θ1q “ fpa|θ2q. But, following equation (4), this is not the case since

µθ1 “ δπ1 ‰ δπ2 “ µθ2

implies Iθ1 ‰ Iθ2 .16 đ

The example illustrates how adherence to IUC is not a consequence of the entropy-
based cost alone but a joint property of rational inattention and expected utility. This
joint property yields substantive economic consequences: Hébert and La1O (2023)
shows it guarantees equilibrium existence with zero non-fundamental volatility in a
class of generalized beauty contest games with endogenous information; Angeletos
and Sastry (2024) shows it is necessary and sufficient to obtain a version of the First
Welfare theorem for general equilibrium economies with inattentive agents. As the
arguments of these papers rely on IUC, Example 2 suggests that their conclusions
may not hold under ambiguity aversion.

16By contradiction, let Iθ1 “ Iθ2 . By Proposition 3, this implies that fpa|θ1q “ fpa|θ2q. For some
y ą 0, f0paq ą 0 and, in particular, fpa|θ1q ą 0. By equation (4), this implies that fpa|θ3q ą 0. Now,
Iθ1 “ Iθ2 is equivalent to, after some calculations, fpa|θ1qupa, θ1q`fpb|θ1qupb, θ1q “ fpa|θ3qupa, θ3q,
which is not possible as the LHS is positive, while the RHS is negative.
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The intuition for this failure is as follows. On the one hand, the entropy-based
cost is invariant, i.e., roughly, the relabelling of states does not alter the informa-
tion cost, and compressing states has no consequences as long as the signals do not
distinguish between them.17 On the other, an expected utility DM is indifferent be-
tween information structures that differ solely for the information provided about
payoff-equivalent states, implying it is never optimal to costly distinguish them. This
no longer holds under ambiguity aversion: DMs may find it optimal to differentiate
payoff-equivalent states as long as they provide different information about models.
This discussion suggests a weaker form of invariance, where we compress payoff and
information-equivalent states; we formalize it next.

Two states θ1, θ2 P Θ are information-equivalent if µθ1 “ µθ2 . Notice that the
notion of information-equivalence does not rely on the problem solution but only on
DM’s uncertainty perception. Furthermore, by equation (5), it is immediate to verify
that, if θ1, θ2 P Θ are information-equivalent, then Iθ1 “ Iθ2 , conforming with our
previous interpretation of information value.

Axiom (weak IUC). If θ1, θ2 P Θ are payoff and information-equivalent, then
fp¨|θ1q “ fp¨|θ2q.

Proposition 3. If f solves RI with smooth ambiguity (3), it satisfies weak IUC.

Proposition 3 states that the RI solution is unchanged if we compress both payoff
and information-equivalent states, implying that any ambiguity averse DM never
distinguishes between states that share the same payoff structure and induce the
same information about models. Notice that, since only one model is possible under
expected utility, i.e., |Π| “ 1, every state is information-equivalent, which implies
that weak IUC collapses to IUC.

3.2 Multinomial Logit: Robust Foundation

We investigate when our solution reduces to Luce’s (1959) multinomial logit model.
For the expected utility case, Matějka and McKay (2015) show that Luce’s model is
obtained if every action is indistinguishable before processing information, a condition
they call a priori homogeneity. In this section, we align with their framework by

17For a formal discussion on invariant information costs, see Hébert and La1O (2023), Angeletos
and Sastry (2024); this notion originates from information geometry, Amari and Nagaoka (2000).
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identifying states with the induced payoff-vector.18 Furthermore, as duplicate actions
are treated as a single one (Proposition 6), we assume no duplicates without loss.

Let ρ̃ P ∆pRAq be the probability over payoff-vectors defined as ρ̃pv1, . . . , v|A|q “

ρpθq if v :“ pv1, . . . , v|A|q “ pupa1, θq, . . . , upa|A|, θqq for θ P Θ. A priori homogeneity
holds if ρ̃ is invariant to all permutations of the indexes in v. Two states θ1, θ2 P Θ

are exchangeable if there exists an action-index permutation ι : |A| Ñ |A| such that
pupa1, θ1q, . . . , upa|A|, θ1qq “ pupaιp1q, θ2q, . . . , upaιp|A|q, θ2qq. Let Θ{e be the resulting
quotient space whose elements are equivalent classes of exchangeable states.

With ambiguity aversion, a prior homogeneity is no longer sufficient to obtain
Luce’s model. We need to further require that equivalence classes of exchangeable
states are unambiguous, i.e., for every rθs P Θ{e, πprθsq “

ř

θPrθs
πpθq is constant

across π P Π. This property is trivially satisfied under expected utility or if all states
belong to the same exchangeable class.

Proposition 4. If problem (3) is a priori homogeneous and classes of exchangeable
states are unambiguous, then the stochastic choice rule

fpa|θq “
exprupa, θq{λs

ř

bPA exprupb, θq{λs
(8)

solves RI with smooth ambiguity.

This result tells us that, under our assumptions, Luce’s solution (1959) allows the
DM to perfectly hedge against ambiguity. When actions are a priori homogeneous and
classes of exchangeable states are unambiguous, we show that the stochastic choice
rule (8) associates each model with the same expected utility amount. Therefore,
ambiguity aversion plays no role since every model is equivalent in expected utility
terms. This implies that the value of the problem associated with (8) equals the one
obtained under expected utility, which is optimal by Matějka and McKay (2015). By
Jensen’s inequality, it must also be optimal for any ambiguity aversion level.19

As a priori homogeneity is defined in terms of utils, it may hold even when actions
are not homogeneous according to the smooth certainty equivalent. The following
example applies Proposition 4 to find an analytical solution in one of these case.

18In their framework, Matějka and McKay (2015) identify states with the payoff associated with
each action, treating two payoff-equivalent states as the same. As payoff-equivalent states may differ
for their information value, we study a setting where they are not automatically merged by the state
description. We can relax the reduction of states to payoff-vectors in this section by assuming that
payoff-equivalent states are unambiguous, i.e., every model assigns them the same probability.

19By Jensen’s inequality, the value of the problem under ambiguity aversion is lower than under
expected utility for any stochastic choice rule.
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Example 3. The following payoff structures describe decision problems A and B.

A θ1 θ2
a 2 1
b 1 2

B θ1 θ2 θ3
a 2 1 0
b 1 2 0

We first illustrate our new condition. In problem A, all the states, θ1 and θ2, are
exchangeable and, therefore, belong to the same exchangeable class, which must be
unambiguous. In problem B, where the state θ3 is also present, we have two classes of
exchangeable state: rθ1s “ rθ2s and rθ3s. Hence, our requirement is satisfied if πpθ3q

is constant for all models in Π.
Consider now problem A. Let the collection of possible models be tπ1, π2u, where

π1 “ p5{6, 1{6q and π2 “ p1{3, 2{3q, and the prior be µ “ p1{3, 2{3q. Notice that the
smooth certainty equivalent, before processing information, differs for action a and b:

V pϕ, µq
paq “ ϕ´1

ˆ

1

3
ϕ

ˆ

5

6
¨ 2 `

1

6
¨ 1

˙

`
2

3
ϕ

ˆ

1

3
¨ 2 `

2

3
¨ 1

˙ ˙

V pϕ, µq
pbq “ ϕ´1

ˆ

1

3
ϕ

ˆ

5

6
¨ 1 `

1

6
¨ 2

˙

`
2

3
ϕ

ˆ

1

3
¨ 1 `

2

3
¨ 2

˙ ˙

for any ϕ strictly concave. However, as the predictive distribution is ρpθ1q “ ρpθ2q “

1{2, the problem is a priori homogeneous. By Proposition 4, its solution follows Luce’s
(1959) multinomial logit model for any level of ambiguity aversion,

fpa|θ1q “ fpb|θ2q “
expr2{λs

expr2{λs ` expr1{λs
.

đ

4 Axiomatic Characterization

Consider the perspective of an external analyst who observes the DM’s behavior
conditional on each state of the world. As the analyst does not observe the agent’s
beliefs, the state space faced by the DM is unknown. For this reason, we include all
possible states in the analyst’s data set. The objective is to construct statistics based
on the available data, composed solely of stochastic choice rules, to verify if DM’s
behavior is consistent with rational inattention for some ambiguity aversion level.
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We modify section 2 notation to relate to Matějka and McKay’s (2015) axiomati-
zation more closely. Let P be a finite set of prizes and assume |A| ě 3. We define the
state space as all possible action-prize combinations, Θ :“ PA. For every a P A, we
denote by θpaq P P the prize associated with action a when the state is θ P Θ. For ev-
ery state θ P Θ, the analyst has access to a data set composed of the choice frequency
fp¨|θq P ∆pAq. We characterize the properties this data set must satisfy to allow
the construction of statistics to represent a utility for each prize v̂pθpaqq :“ ûpa, θq, a
probability distribution over actions f̂ 0 P ∆pAq, and a state fixed-effect Î : Θ Ñ R`

such that equation (4) holds, i.e.,

fpa|θq “
f̂ 0paq exprv̂pθpaqq ¨ Îpθqs

ř

bPA f̂
0pbq exprv̂pθpbqq ¨ Îpθqs

(9)

for every a P A, θ P Θ. Notice that we can rescale v̂ to allow for λ ą 0.
Whenever the data set does not match the properties characterizing equation (9),

this axiomatic approach allows the analyst to infer that the decision maker’s behavior
is incompatible with rational inattention for any level of ambiguity aversion. The
converse does not hold since the statistics in the representation only need to satisfy
equation (9) and may not arise from any optimal information acquisition problem.
This caveat also applies to the result in Matějka and McKay (2015).

Matějka and McKay (2015) characterize the solution of RI under EU (6) with two
axioms that generalize Luce’s (1959) independence of irrelevant alternatives (IIA).20

The following matrices of prizes summarize salient aspects of their axiomatization.

A1 θ1 θ2
a l l

b △ △

A2 θ1 θ2
a l △
b l △

Figure 2: Matějka and McKay (2015) axiomatization.

20IIA can be stated as follows. If fpam|θ1q ą 0, then

fpan|θ1q

fpam|θ1q
“

fpaℓ|θ2q

fpak|θ2q

for every ak, aℓ, am, an P A and θ1, θ2 P Θ such that either piq θ1panq “ θ2paℓq and θ1pamq “ θ2pakq

or piiq θ1panq “ θ1pamq and θ2paℓq “ θ2pakq. When action an coincides with aℓ, and action am with
k, then Axiom 1 corresponds to piq and Axiom 2 to piiq.
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The symbols l and △ in the entries represent the prizes of playing actions in every
state. The two matrices can be viewed as part of a larger decision problem that, for
simplicity, we left unspecified.

Matrix A1 describes a situation where the states θ1 and θ2 deliver the same prizes
for the actions a and b. We say that the states θ1, θ2 P Θ are payoff-equivalent con-
ditional on a, b P A if θ1paq “ θ2paq and θ1pbq “ θ2pbq. The first axiom postulates
that the probability ratio induced by the observed stochastic choice rule, which cap-
tures the relative frequency of playing two actions conditional on the same state, is
unaffected by payoff-equivalent states.

Axiom 1. If fpb|θ1q ą 0, then

fpa|θ1q

fpb|θ1q
“
fpa|θ2q

fpb|θ2q

@θ1, θ2 P Θ, a, b P A such that θ1 and θ2 are payoff-equivalent conditional on a, b.

Matrix A2 describes the opposite situation, as the actions a and b deliver the
same prize in each state θ1 and θ2. We say that the actions a, b P A are duplicates
conditional on θ1, θ2 P Θ if θ1paq “ θ1pbq and θ2paq “ θ2pbq. The second axiom
postulates that the probability ratio induced by the observed stochastic choice rule
is unaffected by duplicate actions.

Axiom 2. If fpb|θ1q ą 0, then

fpa|θ1q

fpb|θ1q
“
fpa|θ2q

fpb|θ2q

for every θ1, θ2 P Θ, a, b P A such that a and b are duplicates conditional on θ1, θ2.

When the DM is ambiguity averse, duplicates are treated as a single action (Propo-
sition 6), implying that Axiom 2 holds. On the other hand, Axiom 1 is no longer sat-
isfied under ambiguity aversion. Analogously to Example 2, payoff-equivalent states
may provide different information about models that ambiguity averse DMs could
exploit to hedge against ambiguity. Ideally, we would like Axiom 1 to hold only for
information-equivalent states, as in weak IUC, but the information value depends on
DM’s beliefs, which we do not observe.

We can restate Axiom 1 in terms of two separate assumptions. Axiom 1 says
that if two states are payoff-equivalent conditional on a pair of actions, then p1.aq
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the corresponding probability ratios are well-defined, and p1.bq coincide. While point
p1.bq is not satisfied under ambiguity aversion, p1.aq is. We isolate property p1.aq with
the following axiom.

Axiom 1.a. For every θ1, θ2 P Θ and a, b P A such that θ1 and θ2 are payoff-
equivalent conditional on a, b, we have that fpb|θ1q ą 0 ùñ fpb|θ2q ą 0.

We call an action positive if it is played with positive probability in every state.
The consequences of Axiom 1.a are substantive, as it implies, together with Axiom
2, that every action, played with positive probability in some states, is positive.

Lemma 3. If Axioms 1.a and 2 hold, then every action is either never played in any
state or positive.

We next discuss how to generalize p1.bq to account for ambiguity aversion. We
do so by noticing that, if the states θ1 and θ2 are payoff-equivalent conditional on
the actions a and b, we can apply equation (7) to relate the corresponding posterior
ratios as follows

ˆ

ρpθ1|aq

ρpθ1|bq

˙1{Iθ1
“

ˆ

ρpθ2|aq

ρpθ2|bq

˙1{Iθ2
. (10)

That is, under ambiguity aversion, posterior ratios may differ across payoff-equivalent
states, but their difference vanishes once we adjust for the reciprocal of each state’s
information value. Under expected utility, since information values equal one in every
state, the two posterior ratios coincide, a property called invariant likelihood ratio.
Notice, by the definition of predictive posterior, the invariant likelihood ratio property
is equivalent to p1.bq. Therefore, equation (10) is our candidate to generalize p1.bq.

Constructing statistics for equation (10) is not immediate as the analyst does
not observe posterior distributions and information values directly. We rely on the
following construction. First, as in Matějka and McKay (2015), we require that at
least three actions are positive. Let these actions be a1, a2 and aN according to the
enumeration A :“ ta1, a2, . . . , aNu. We denote by θk P Θ any state that assigns the
same prize to actions a1 and ak,

θk “ pθpakq, θpa2q, . . . , θpakq, . . . , θpaNqq.
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For every action ak P A and state θk P Θ we use the following probability ratio

ξk :“
fpak|θkq

fpa1|θkq

as a sufficient statistics for f 0pakq{f 0pa1q. That is, ξk captures the relative likelihood
of selecting action ak over action a1 for states that assign the same prize to the two
actions. Notice that, for every action ak P A, ξk is well-defined by Lemma 3.

For every payoff-equivalent state θ1, θ2 P Θ conditional on the actions aℓ, ak P A,
we define the following statistic whenever possible

ηℓ, kpθ1, θ2q :“ log
„

ξk ¨ fpaℓ|θ1q

ξℓ ¨ fpak|θ1q

ȷ

M

log
„

ξk ¨ fpaℓ|θ2q

ξℓ ¨ fpak|θ2q

ȷ

. (11)

For any state θ P Θ, the fraction pξk ¨fpaℓ|θqq{pξℓ¨fpak|θqq constitutes a statistic for the
posterior ratio ρpθ|aℓq{ρpθ|akq since ξk{ξℓ is a statistic for f 0pakq{f 0paℓq. Therefore,
by comparing equations (10) and (11), we term ηℓ, kpθ1, θ2q the relative information
value of state θ1 compared to state θ2 when the actions aℓ and ak are considered.

The following axiom ensures we can interpret ηℓ, kpθ1, θ2q as a statistic for Ipθ1q{Ipθ2q.

Axiom 1.b*. For every payoff-equivalent state θ1, θ2 P Θ conditional on some
actions am, an P A, if ηn, mpθ1, θ2q is well-defined, then D η : Θ ˆ Θ Ñ R` such that

1. ηn, mpθ1, θ2q “ ηpθ1, θ2q.

Furthermore, for every θi P Θ such that ηpθ1, θiq and ηpθi, θ2q are well-defined

2. ηpθ1, θ2q “ ηpθ1, θiq ¨ ηpθi, θ2q, i.e., it does not depend on the choice of θi P Θ.

Point 1 of Axiom 1.b* is a form of action-pair independence. It says the relative
information value between states θ1 and θ2 does not depend on a specific action pair.
Point 2 is a form of transitivity. It implies that, for every state θi P Θ, ηpθ1, θiq¨ηpθi, θ2q

is independent of i and equivalent to ηpθ1, θ2q, provided that ηpθ1, θiq and ηpθi, θ2q are
well-defined.

Axiom 1.b* generalizes the property p1.bq of Axiom 1. Indeed, if ηℓ, kpθ1, θ2q is
well-defined for aℓ, ak P A, θ1, θ2 P Θ, p1.bq implies that ηℓ, kpθ1, θ2q “ 1.
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We are finally ready to state our representation.

Theorem 2. Assume that three actions are positive. The following are equivalent:

piq Axioms 1.a, 1.b* and 2 hold,

piiq There exist v̂ : P Ñ R, Î : Θ Ñ R` and f̂ 0 P ∆pAq such that

fpa|θq “
f̂ 0paq exprv̂pθpaqq ¨ Îpθqs

ř

bPA f̂
0pbq exprv̂pθpbqq ¨ Îpθqs

(12)

for every action a P A and state θ P Θ.

By replacing Axiom 1 with the Axioms 1.a and 1.b*, we are able to represent
a multiplicative fixed-effect Î : Θ Ñ R`, providing, in light of equation (4), a be-
havioral characterization of rational inattention with ambiguity aversion. This result
establishes that Axiom 1.b*, and therefore equation (10), suitable generalizes the
invariant likelihood ratio to the ambiguity averse case.

5 Additional Results

We conclude by discussing additional results related to our setting.

CARA. In our analysis we impose only minor restrictions (Assumption 1) on ambi-
guity attitudes. The following result states additional properties that arise when ϕ

satisfies constant absolute ambiguity aversion (CARA), i.e., ϕpxq “ ´ 1
γ
e´γx, γ P R`.

Proposition 5. Let θ P Θ, and f be a stochastic choice rule. If ϕ satisfies CARA,
the following holds:

piq EρrIθpfqs “ 1,

piiq Iθpfq ě 1 if and only if ϕ´1pEµθ
rϕ

`

Upπ, fq
˘

sq ď ϕ´1pEµrϕ
`

Upπ, fq
˘

sq.

Point piq says that information values average 1. This implies that not all states
can simultaneously have high or low information value, a property that seems natural
in our context. Point piiq strengthens our interpretation of “bad states” (Proposi-
tion 1) by establishing that state θ P Θ has high (low) information value whenever
computing the certainty equivalent using µθ instead of µ reduces (increases) its value.
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Maxmin preferences. We exploit the robustness of Proposition 4 to derive optimal
stochastic choice rules under extreme ambiguity aversion. Recall that, if ϕ satisfies
CARA, then maxmin expected utility (MMEU) by Gilboa and Schmeidler (1989) is
a limiting case of smooth ambiguity

lim
γÑ`8

V pϕ,µq
paq “ min

πPΠ

ÿ

θPΘ

upa, θqπpθq (13)

for every a P A and µ with support Π.
Contrary to the smooth model, which allows the definition of a predictive distribu-

tion, MMEU does not provide any criterion to aggregate models. To apply the model
to our setup, we define the entropy-based cost with respect to probability distributions
that satisfy a minimal assumption of coherence. We say that ψ P ∆pΘq is generated
by Π if there exists a full-support distribution η P ∆pΠq such that Eηrπs “ ψ.

For some φ P ∆pΘq, rational inattention with extreme ambiguity aversion,21 stated
in terms of stochastic choice rules, is defined as

max
f

min
πPΠ

ÿ

θPΘ

ÿ

aPA

upa, θq fpa|θqπpθq ´ cpf, φq. (14)

Corollary 1 strengthens Proposition 4 by stating that the multinomial logit model
solves RI with extreme ambiguity aversion if it is possible to generate one predictive
probability distribution that makes the problem a priori homogeneous.

Corollary 1. If problem (14) is a priori homogeneous for some ψ P ∆pΘq gen-
erated by Π and classes of exchangeable states are unambiguous, then the stochastic
choice rule

fpa|θq “
exprupa, θq{λs

ř

bPA exprupb, θq{λs

solves RI with extreme ambiguity aversion.

The result follows by Proposition 4 and the fact that the prior µ P ∆pΠq vanishes
in the limit of equation (13) except for its support Π.

Duplicates. Consider Luce’s (1959) multinomial logit model

Ppaction a chosen from set Aq “
exprupaqs

ř

bPA exprupbqs
. (15)

21This model is not nested in the one studied by Hansen et al. (2022) as they calculate the
entropy-based cost with respect to the worst-case prior.
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A well-known concern related to this model is Debreu’s (1960) red-bus blue-bus criti-
cism. Suppose the DM is indifferent between the actions in the set ta, bu, e.g., taking
a train or a red bus. Following equation (15), this implies that Ppaq “ Ppbq “ 1{2.
Assume now that b1, a duplicate of action b, is added to the choice set, e.g., a
blue bus that differs from the red one only by its color. Then, by equation (15),
Ppaq “ Ppbq “ Ppb1q “ 1{3. This, Debreu argues, is counterintuitive, as adding a
duplicate of an existing action decreases the chances of choosing the unduplicated
ones, e.g., adding the blue bus decreases the probability of choosing the train.

Matějka and McKay (2015) show that this counterintuitive behavior does not
arise under RI. As the duplicates b and b1 are a priori equivalent, optimal information
processing treats them as a single action. This is a consequence of the role that
f 0 P ∆pAq, which is absent in (15), plays in equation (6), capturing the extent to
which each action is a priori appealing.

We now show that the same is true with ambiguity aversion. We say that two
actions are duplicates if they yield the same payoff state-wise, i.e., actions a, b P A

are duplicates if upa, θq “ upb, θq for every θ P Θ. Given any RI problem, we can
construct the duplicate problem by removing action b P A and substituting it with
two duplicates b1, b2. Denote the new action set by Ā.

Proposition 6. If f solves RI with smooth ambiguity, then f̄ solves the duplicate
problem if and only if

fpa|θq “ f̄pa|θq

fpb|θq “ f̄pb1|θq ` f̄pb2|θq

for every a P Āztb1, b2u. In particular, f̄pb1|θq “ fpb|θq and f̄pb2|θq “ 0 is a solution.

Proposition 6 implies that adding a duplicate action does not affect the informa-
tion value of any state. Intuitively, as adding duplicates does not affect the obtainable
payoff in each state, it also does not modify states’ information value.

Comparative information values. We compare states featuring different informa-
tion values, and, in light of equation (7), we show that Proposition 2 holds compara-
tively across them.

Corollary 2. For every θ1, θ2 P Θ, and a, b P A, the following holds:

ρpθ1|aq

ρpθ1|bq
ě
ρpθ2|aq

ρpθ2|bq
ðñ

Iθ1pfq

Iθ2pfq
ě
upa, θ2q ´ upb, θ2q

upa, θ1q ´ upb, θ1q
.
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The equivalence above says that the “recommendation” to play a P A is more
informative than b P A about state θ1 P Θ compared to state θ2 P Θ whenever the
ratio of the corresponding information values Iθ1{Iθ2 is greater than the ratio of the
rewards of distinguishing action a from b in both states.

In particular, Corollary 2 implies that whenever the payoff incentives are held
constant across the two states, i.e., upa, θ1q ´ upb, θ1q “ upa, θ2q ´ upb, θ2q, then state
θ1 P Θ is of higher information value than state θ2 P Θ, which we define as Iθ1pfq ě

Iθ2pfq, if and only if the corresponding posterior ratio is also higher. If the rewards
of distinguishing action a from b in states θ1 and θ2 are equal, then any attentional
difference across the two states must be attributed to their information values.

Information on models. We investigate the consequences of altering the informa-
tion processing domain by allowing the DM to pay attention to models instead of
payoff-relevant states. We develop a possible framework that can be re-interpreted as
the standard rational inattention problem, where the properties discussed by Matějka
and McKay (2015), among others, still hold.

The information structure G : Π Ñ ∆pXq, mapping each model π P Π, where Π is
assumed to be finite, to a signal distribution in ∆pXq, represents the DM’s attention
allocation. The entropy-based information cost takes the following form

kpµ,Gq :“ λpH̃pµq ´ ExrH̃pµp¨|xqqsq,

where λ ě 0, H̃ : ∆pΠq Ñ R` is the entropy function defined over the set of priors,
and µp¨|xq P ∆pΠq is the posterior obtained by the Bayesian updating of the prior µ
after observing the signal x P X. The DM solves the following problem

max
G:ΠÑ∆pXq

max
α:XÑA

¨

˝

ÿ

πPΠ

ÿ

xPX

ϕ

˜

ÿ

θPΘ

upαpxq, θq πpθq

¸

Gpx|πq µpπq ´ kpµ,Gq

˛

‚ (16)

Paralleling assumption piiq of Definition 1, where information on states does not affect
the prior over models, information on models leaves the information on states intact
and updates only the prior µ in equation (16). Furthermore, the certainty equivalent
in the equation is not expressed in terms of utils via the normalization ϕ´1 as in (2),
but in ambiguous utils directly.

Re-interpreting equation (16) as a rational inattention problem under expected
utility is relatively straightforward. To do so, treat Π as the set of payoff-relevant
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states of the new problem and set the utility as ũpa, πq :“ ϕp
ř

Θ upαpxq, θq πpθqq for
every a P A, π P Π. The prior over models µ plays the role of prior over payoff-relevant
states, and the information cost function k is unchanged.

If λ ą 0, the stochastic choice rule g : Π Ñ ∆pAq that solves (16) satisfies

gpa|πq “
g0paq exprũpa, πq{λs

ř

bPA g
0pbq exprũpb, πq{λs

and the consumer optimally trade-off utility gains associated with each model ũpa, πq

and information costs λ. Interestingly, under this re-labeling, ambiguity attitudes ϕ
play the same role that risks attitudes ũ play under expected utility.

Appendix

Proof of Lemma 1. We proceed in four steps.

Step 1. For every strategy pF, αq, we can rewrite the certainty equivalent in equa-
tion (2) as follows

ϕ´1
pEµrϕp

ř

θPΘ

ř

xPX upαpxq, θqF px|θq πpθqqsq

“ ϕ´1
pEµrϕp

ř

θPΘ

ř

aPA

ř

xaPXa
upαpxaq, θqF pxa|θq πpθqqsq

“ ϕ´1
pEµrϕp

ř

θPΘ

ř

aPA upa, θq
ř

xaPXa
F pxa|θq πpθqqsq

“ ϕ´1
pEµrϕp

ř

θPΘ

ř

aPA upa, θqfpa|θq πpθqqsq “ ϕ´1pEµrϕpUpπ, fqqsq.

where f is the stochastic choice rule generated by pF, αq.

Step 2. We prove that any optimal strategy implies a constant posterior predictive
distribution on each Xa, for a P A. We do so by showing that any optimal strategy
pF, αq that induces ρp¨|x1q ‰ ρp¨|x2q, for x1, x2 P Xa, cannot be optimal. We proceed
by contradiction. The statement above implies that F px1|θq ‰ F px2|θq for some
θ P Θ. We construct a new strategy pF̂ : Θ Ñ ∆pX̂q, α̂ : X̂ Ñ Aq as follows:
X̂ :“ pXztx1, x2uq Y tx̂u; F̂ equals F except for F̂ px̂|θq “ F px1|θq ` F px2|θq for every
θ P Θ; α̂ equals α except for α̂px̂q “ a. Notice that, by the concavity of the entropy
function, the information structure F̂ is less expensive than F . Furthermore, the
certainty equivalent associated with pF̂ , α̂q is equivalent to the one of pF, αq. Indeed,
by noticing that F and F̂ generate the same stochastic choice rule, the conclusion
follows by step 1. Therefore, pF, αq cannot be optimal.
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Step 3. We show that cpρ, F q “ cpf, ρq, where F is part of the optimal strategy
pF, αq and f is the generated stochastic choice rule. By step 2, if pF, αq is optimal,
then predictive posteriors are constant on Xa, i.e., ρp¨|Xaq is constant. Therefore, the
joint distribution between states and signals is the same as between actions and states.
The equality cpρ, F q “ cpf, ρq holds by the symmetry of the mutual information.

Step 4. By contradiction, suppose the stochastic choice rule f generated by the
strategy σ that solves problem (2) does not solve (3). Assume instead that f 1 is
a solution of (3). Clearly, V pf 1q ´ cpf 1, ρq ą V pfq ´ cpf, ρq. By steps 1 to 3, the
optimality of σ implies that f yields the same value as σ. However, as every stochastic
choice rule and its induced strategy yield the same value by construction, the strategy
σ1 induced by f 1 yields a higher value than σ. Therefore, σ cannot solve problem (2).
The other direction is similarly shown.

Proof of Lemma 2. Under Assumption 1, Proposition 1 in Hennessy and Lapan
(2006), which builds on Hardy et al. (1934) Theorem 106.piq, implies that the certainty
equivalent V is concave in U when Π is finite. The proof for infinite Π follows the
exact same steps and is thus omitted.

For every θ P Θ, consider the stochastic choice rule fp¨|θq “ βgp¨|θq`p1´βqhp¨|θq,
where β P r0, 1s, obtained by convex combination of the stochastic choice rules g and
h. We have that

ϕ´1
pEµrϕpUpπ, fqqsq “ ϕ´1

pEµrϕp
ř

θPΘ

ř

aPA upa, θqfpa|θqπpθqqsq

“ ϕ´1
pEµrϕp

ř

θPΘ

ř

aPA upa, θqpβgpa|θq ` p1 ´ βqhpa|θqq πpθqqsq

“ ϕ´1
pEµrϕpβ

ř

θPΘ

ř

aPA upa, θqgpa|θq πpθq ` p1 ´ βq
ř

θPΘ

ř

aPA upa, θqhpa|θqπpθqqsq

“ ϕ´1
pEµrϕpβUpπ, gq ` p1 ´ βqUpπ, hqsq

ě βϕ´1
pEµrϕpUpπ, gqqsq ` p1 ´ βqϕ´1

pEµrϕpUpπ, hqqsq

where the last inequality follows by concavity of V with respect to U . Therefore, the
value function of problem (3) is concave as it is the sum of concave functions.

Furthermore, the domain of problem (3), ∆pAqΘ, is convex with respect to the
convex combination of stochastic choice rules defined above.

Proof of Theorem 1. The Lagrangian associated with problem (3) is
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ϕ´1
pEµrϕp

ř

θPΘ

ř

aPA fpa|θqupa, θq πpθqqsq ´ cpf, ρq

`
ř

aPA

ř

θPΘ ψapθqfpa|θq ´
ř

θPΘ ξpθqp
ř

aPA f
0paq ´ 1q

where ψapθq ě 0 and ξpθq are the multipliers of the non negative and the unitary
constraint, respectively. By taking the first order conditions, we obtain

ϕ1
pV pfqq

´1
¨ pEµrϕ1

pUpπ, fqqπpθqs ¨ upa, θqq

` λpρpθqlogpf 0
paqq ´ ρpθqlogpfpa|θqq ` ψapθq ´ ξpθq “ 0.

Dividing by ρpθq ą 0 and rearranging, we have that

upa, θq ¨ ϕ1
pV pfqq

´1
¨ Eµθ

rϕ1
pUpπ, fqqs

` λplogpf 0
paqq ´ logpfpa|θqq ` pψapθq ´ ξpθqq{ρpθq “ 0.

We show that, if fpaq ą 0, then fpa|θq ą 0, and hence ψapθq “ 0. By contradic-
tion, assume that fpa|θq “ 0. This implies that logpfpa|θqq “ ´8. As ψapθq ě 0,
we must have ξpθq “ `8 for the FOC to hold. This implies that, for every b P A,
either ψbpθq “ `8 or logpfpb|θqq “ ´8, that is, fpb|θq “ 0. But, ψbpθq ą 0 implies
fpb|θq “ 0. The argument above implies that fpb|θq “ 0 for every b P A, which
contradicts the feasibility of the problem.

If f 0paq ą 0, we can rewrite the FOC as

f 0
paq ¨ exprpupa, θq{λq ¨ ϕ1

pV pfqq
´1

¨ Eµθ
rϕ1

pUpπ, fqqs ´ ξpθq{pλ ¨ ρpθqqs “ fpa|θq

that can be rearranged as equation (4) by summing both sides over a P A and applying
ř

aPA fpa|θq “ 1.

Proof of Proposition 1. We first show piq ðñ piiq when the support of µθ is a
singleton for every θ P Θ. Let suppµθ “ πθ. In this case, Iθpfq ě 1 iff ϕ1pUpπθ, fqq ě

ϕ1pV pfqq. By concavity of ϕ, ϕ1 is decreasing which yields the desired conclusion.
Assume that ϕ is prudent to show piiq ùñ piq. As ϕ is concave, we have

that Eµθ
rUpπ, fqs ď V pfq implies ϕ1pEµθ

rUpπ, fqsq ě ϕ1pV pfqq. As ϕ1 is convex, by
Jensen’s inequality, Eµθ

rϕ1pUpπ, fqqs ě ϕ1pEµθ
rUpπ, fqsq, which concludes.

Assume that ϕ is imprudent to show piq ùñ piiq. As ϕ is concave, we have
that Eµθ

rUpπ, fqs ą V pfq implies ϕ1pEµθ
rUpπ, fqsq ă ϕ1pV pfqq. As ϕ1 is concave, by

Jensen’s inequality, Eµθ
rϕ1pUpπ, fqqs ď ϕ1pEµθ

rUpπ, fqsq, concluding the proof.
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Proof of Proposition 2. By Theorem 1, we have that

ρϕpθ|aq

ρϕpθ|bq
“
fϕpa|θq f 0,ϕpbq

fϕpb|θq f 0,ϕpaq
“

ˆ

exprupa, θq{λs

exprupb, θq{λs

˙Iθpfϕq

.

By upa, θq{λ ě upb, θq{λ and Iθpf
ϕq ě 1, the conclusion immediately follows.

Proof of Proposition 3. Let θ1 and θ2 be payoff and information-equivalent. No-
tice that, by equation (5), if θ1, θ2 P Θ are information-equivalent, that is µθ1 “ µθ2 ,
then Iθ1 “ Iθ2 . For every a P A, we have that

f 0paq exprupa, θ1q ¨ Iθ1pfq{λs
ř

bPA f
0pbq exprupb, θ1q ¨ Iθ1pfq{λs

“
f 0paq exprupa, θ2q ¨ Iθ2pfq{λs

ř

bPA f
0pbq exprupb, θ2q ¨ Iθ2pfq{λs

.

Theorem 1 implies fpa|θ1q “ fpa|θ2q for every a P A, proving the statement.

Proof of Proposition 4. Fix pϕ, µq representing ambiguity aversion, and let φ be
a strictly increasing and concave function such that φ˝ϕ “ ϕ1. By Jensen’s inequality,
for every stochastic choice rule f we have that

V pϕ, µq
pfq “ ϕ´1

ˆ

EµrϕpUpπ, fqqs

˙

“ pϕ´1
˝ φ´1

q ˝ φ

ˆ

EµrϕpUpπ, fqqs

˙

“ ϕ1´1
˝ φ

ˆ

EµrϕpUpπ, fqqs

˙

ě ϕ1´1

ˆ

Eµrpφ ˝ ϕqpUpπ, fqqs

˙

“ ϕ1´1

ˆ

Eµrϕ1
pUpπ, fqqs

˙

“ V pϕ1, µq
pfq

This means that the higher ambiguity aversion, the lower the value of the certainty
equivalent.

Furthermore, as the certainty equivalents V pϕ, µq and V pϕ1, µq share the same µ,
they also induce the same predictive predictive distribution ρ. Hence, they give rise
to the same entropy-based costs cpf, ρq for every f . This implies that

max
f

V pϕ, µq
pfq ´ cpf, ρq ě max

f
V pϕ1, µq

pfq ´ cpf, ρq.

Under a priori homogeneity, the RI solution under expected utility follows the
multinomial logit model of equation (8) (Proposition 1; Matějka and McKay, 2015). In
particular, this formula equates fpa|θ1q “ fpb|θ2q for every pair pa, θ1q, pb, θ2q P AˆΘ

such that upa, θ1q “ upb, θ2q and θ1, θ2 are exchangeable. Notably, this implies that
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ř

aPA fpa|θqupa, θq is constant for every θ P rθs P Θ{e. We denote the expected utilities
associated with each equivalence class rθs as Upδrθs, fq.

For every f , we have that

Upπ, fq “
ÿ

θPΘ

πpθq
ÿ

aPA

fpa|θqupa, θq “
ÿ

rθsPΘ{e

πprθsq Upδrθs, fq.

As exchangeable classes are unambiguous, for every rθs P Θ{e and π P Π, πprθsq is
constant. Hence, Upπ, fq “ Upfq is constant as well for every π P Π. Furthermore,
for every ϕ, we have that

V pϕ, µq
pfq “ ϕ´1

ˆ

EµrϕpUpπ, fqqs

˙

“ ϕ´1

ˆ

EµrϕpUpfqqs

˙

“ Upfq.

This implies that V pϕ, µqpfq is constant in ϕ and equates the certainty equivalent of
the problem under expected utility. Hence, f yields the same value as under expected
utility and, by Jensen’s inequality, is optimal for every ϕ.

Proof of Theorem 2. The fact that piiq implies piq follows directly from equation
(12) and the discussion therein. In the remainder, we show that piq implies piiq.

We introduce additional notation to ease the exposition. We write θ1 „a,b θ2

when the states θ1, θ2 P Θ are payoff-equivalent conditional on a, b P A. Similarly, we
write a „θ1,θ2 b when the actions a, b P A are duplicates conditional on θ1, θ2 P Θ.
Let A :“ ta1, a2, a3, . . . , aNu with |A| ě 3. Recall that θpaiq P P denotes the prize
associated to action ai P A by state θ P Θ :“ PA. For every state θ and prize
p P P , denote by pp, θ´jq P Θ the state that associates the prize θpaiq with each
action ai P Aztaju, and the prize p with action aj P A. Furthermore, we write
θi “ pθpaiq, θ´1q to denote the state assigning the prizes associated to state θ for
every action except at a1 where it assigns the same prize as action ai. Similarly, let
θ´i “ pθpa1q, θ´iq be the state assigning the prizes associated to state θ for every
action except at ai where it assigns same prize as action a1. Clearly, θ1 “ θ´1 “ θ.

Proof of Lemma 3. The following matrix of prizes, which may be part of a larger
decision problem left unspecified, exemplifies the argument below and can be used as
a reference.

Without loss of generality, assume that fpa1|θ1q ą 0 where θ1 P Θ. We want to
show that fpa1|θq ą 0 for every θ P Θ. Consider the state θ´2

1 . Clearly, θ1 „a1,a3 θ´2
1 .
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θ1 θ´2
1 θ2 θ3 θ´2

3

a1 l l ♢ ’ ’

a2 △ l ♢ f ’

a3 ⃝ ⃝ ♡ ▽ ▽

Therefore, by Axiom 1.a, we have that fpa1|θ
´2
1 q ą 0. Now consider a generic state

whose prizes associated to action a1 and a2 coincide, and call this state θ2 P Θ. By
Axiom 2, we have that

fpa2|θ´2
1 q

fpa1|θ´2
1 q

“
fpa2|θ2q

fpa1|θ2q

which implies that fpa1|θ2q ą 0. Finally, consider a generic state and name it θ3 P Θ.
By the previous argument, fpa1|θ

´2
3 q ą 0. Hence, as θ3 „a1,a3 θ´2

3 , by Axiom 1.a,
fpa1|θ3q ą 0, concluding the argument.

Let fpa|θ1q “ 0 for some a P A and θ1 P Θ. We want to show that fpa|θq “ 0 for
all θ P Θ. Assume not, that is, there exists θ2 P Θ such that fpa|θ2q ą 0. By the
previous argument, fpa|θ1q ą 0, which is a contradiction.

We proceed with the proof of Theorem 2. We divide the argument in two steps.

Step 1. Assume there exists a function Î : Θ Ñ R` such that, for every state
θ1, θ2 P Θ with θ1 „aℓ,ak θ2 for some aℓ, ak P A, the following holds

„

ξk ¨ fpaℓ|θ1q

ξℓ ¨ fpak|θ1q

ȷ1{Îpθ1q

“

„

ξk ¨ fpaℓ|θ2q

ξℓ ¨ fpak|θ2q

ȷ1{Îpθ2q

(17)

whenever the corresponding ratios are well-defined. Furthermore, without loss of
generality, assume that the actions a1, a2, aN P A are positive.

Fix a state θ̄ P Θ as a reference. Define v̂ : P Ñ R,

v̂ppq “ log

˜

ξN
fpa1|pp, θ̄´1qq

fpaN |pp, θ̄´1qq

¸

¨
1

Îpp, θ̄´1q
.

In this step, we show that f̂ 0paiq :“ ξi{
ř

j ξj for every ai P A, Î satisfying equation
(17), and v̂ defined as above suffice to represent equation (12). If action ai P A is
never played in any state, then ξi “ 0 and (12) trivially holds. Suppose ai is positive.
For every state θ P Θ, we have that

1 “
ÿ

ajPA

fpaj|θq “ fpai|θq ¨
ÿ

ajPA

fpaj|θq

fpai|θq
“ fpai|θq ¨

ÿ

ajPA

fpaj|θq{fpaN |θq

fpai|θq{fpaN |θq
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which implies

fpai|θq “
fpai|θq{fpaN |θq

ř

ajPA fpaj|θq{fpaN |θq
. (18)

As θ „ai,aN θi for every i P t1, . . . , Nu, we can apply equation (17) to obtain

fpai|θq

fpaN |θq
“

ξi
ξN

¨

«

ξN ¨ fpai|θ
iq

ξi ¨ fpaN |θiq

ffÎpθq{Îpθiq

which allows us to rewrite equation (18) as

fpai|θq “

ξi
ξN

¨

«

ξN ¨ fpai|θ
iq

ξi ¨ fpaN |θiq

ffÎpθq{Îpθiq

ř

ajPA

ξj
ξN

¨

«

ξN ¨ fpaj|θ
jq

ξj ¨ fpaN |θjq

ffÎpθq{Îpθjq
“

ξi
ξN

¨

«

ξN ¨ fpa1|θiq

fpaN |θiq

ffÎpθq{Îpθiq

ř

ajPA

ξj
ξN

¨

«

ξN ¨ fpa1|θ
jq

fpaN |θjq

ffÎpθq{Îpθjq
,

(19)
where the second equality follows from the definition of ξj for j P t1, . . . , Nu.

Let θ̂ P Θ be a state that assigns to action aN the same prize of the reference
state θ̄, i.e., θ̂paNq “ θ̄paNq. In this case, as θ̂j „a1,aN pθ̂pajq, θ̄´1q “: θ̄aj for every
j P t1, . . . , Nu, we apply equation (17) to obtain

fpa1|θ̂
jq

fpaN |θ̂jq
“

ξ1
ξN

¨

«

ξN ¨ fpa1|θ̄ajq

ξ1 ¨ fpaN |θ̄ajq

ffÎpθ̂jq{Îpθ̄aj q

.

By plugging this equation into equation (19), we obtain

fpai|θ̂q “

ξi
ξN

¨

»

—

–

ξN ¨
ξ1
ξN

¨

«

ξN ¨ fpa1|θ̄
aiq

ξ1 ¨ fpaN |θ̄aiq

ffÎpθ̂iq{Îpθ̄ai q

fi

ffi

fl

Îpθ̂q{Îpθ̂iq

ř

ajPA

ξj
ξN

¨

»

—

–

ξN ¨
ξ1
ξN

¨

«

ξN ¨ fpa1|θ̄ajq

ξ1 ¨ fpaN |θ̄ajq

ffÎpθ̂jq{Îpθ̄aj q

fi

ffi

fl

Îpθ̂q{Îpθ̂jq
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“

ξi
ξN

¨ ξ
Îpθ̂q{Îpθ̂iq
1 ¨

«

ξN ¨ fpa1|θ̄
aiq

ξ1 ¨ fpaN |θ̄aiq

ffÎpθ̂q{Îpθ̄ai q

ř

ajPA

ξj
ξN

¨ ξ
Îpθ̂q{Îpθ̂jq

1 ¨

«

ξN ¨ fpa1|θ̄
ajq

ξ1 ¨ fpaN |θ̄ajq

ffÎpθ̂q{Îpθ̄aj q

“ ξi ¨

«

ξN
fpa1|θ̄

aiq

fpaN |θ̄aiq

ffÎpθ̂q{Îpθ̄ai q
L

ÿ

ajPA

ξj ¨

«

ξN
fpa1|θ̄ajq

fpaN |θ̄ajq

ffÎpθ̂q{Îpθ̄aj q

where the third inequality follows as ξ1 “ 1 by construction. By definition of v̂ and
f̂ 0paiq, we have

fpai|θ̂q “
f̂ 0paiq exprv̂pθ̂paiqq ¨ Îpθ̂qs

ř

ajPA f̂
0pajq exprv̂pθ̂pajqq ¨ Îpθ̂qs

which shows our result for states that share the prize associated with the action aN

with the reference state θ̄.
For every k P t1, Nu, θ, θ1, θ2 P Θ, θθ1

k,θ
2
N :“ pθ1pakq, θpa2q, . . . , θpaN´1q, θ

2paNqq P Θ

is the state that assigns each action aj P Azta1, aNu to the prize θpajq; action a1 to
the prize θ1pakq; action aN to the prize θ2paNq. For every i ă N , as θN „a1,ai θθN ,θ̄N ,
we can apply equation (17) to obtain

fpai|θ
N

q “ fpa1|θ
N

q¨
ξi
ξ1

¨

«

ξ1 ¨ fpai|θ
θN ,θ̄N q

ξi ¨ fpa1|θθN ,θ̄N q

ff

ÎpθN q

ÎpθθN ,θ̄N q

“ fpa1|θNq¨
ξi
ξ1

¨

„

exprv̂pθpaiqqs

exprv̂pθpaNqqs

ȷÎpθN q

(20)
where the second equality follows as θθN ,θ̄N share the prize associated with the action
aN with the reference state θ̄. For i “ N , by Axiom 2, as a1 „θN ,θθ̄N ,θ̄N aN ,

fpaN |θNq “ fpa1|θNq ¨
fpaN |θθ̄N ,θ̄N q

fpa1|θθ̄N ,θ̄N q
“ fpa1|θ

N
q ¨
ξN
ξ1

(21)

where again the second equality follows for the same reason as above. By plugging
equation (21) into equation (20), after performing simple calculations, we obtain

fpai|θ
N

q “ fpaN |θNq ¨
ξi
ξN

¨

„

exprv̂pθpaiqqs

exprv̂pθpaNqqs

ȷÎpθN q

(22)

Since
ř

aiPA
fpai|θ

Nq “ 1, by rearranging, we obtain
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fpaN |θNq “
ξN exprv̂pθNpaNqq ¨ ÎpθNqs

ř

ajPA ξj exprv̂pθNpajqq ¨ ÎpθNqs
(23)

Finally, by plugging equation (23) into equation (22) and rearranging we obtain

fpai|θ
N

q “
ξi exprv̂pθNpaiqq ¨ ÎpθNqs

ř

ajPA ξj exprv̂pθNpajqq ¨ ÎpθNqs
“

f̂ 0paiq exprv̂pθNpaiqq ¨ ÎpθNqs
ř

ajPA f̂
0pajq exprv̂pθNpajqq ¨ ÎpθNqs

(24)
establishing our result for all states that takes the form θN .

Let θ P Θ be any state. For every i ă N , by equation (17), as θ „ai,a2 θθ1,θ̄N , we
have that

fpai|θq “ fpa2|θq ¨
ξi
ξ2

¨

«

ξ2 ¨ fpai|θ
θ1,θ̄N q

ξi ¨ fpa2|θθ1,θ̄N q

ff

Îpθq

Îpθθ1,θ̄N q

“ fpa2|θq ¨
ξi
ξ2

¨

„

exprv̂pθpaiqqs

exprv̂pθpa2qqs

ȷÎpθq

(25)
where the second equality follows as the statement holds for states that share the
prize associated with the action aN with the reference state θ̄. For i “ N , by Axiom
2, as a2 „θ,θN aN , we have that

fpaN |θq “ fpa2|θq¨
ξN
ξ2

¨

«

ξ2 ¨ fpaN |θNq

ξN ¨ fpa2|θNq

ff

Îpθq

ÎpθN q

“ fpa2|θq¨
ξN
ξ2

¨

„

exprv̂pθpaiqqs

exprv̂pθpa2qqs

ȷÎpθq

(26)

where the second equality follows as the statement holds for states that takes the
form θN . By imposing

ř

aiPA
fpai|θq “ 1 in equation (25) and rearranging, we obtain

fpa2|θq “
ξ2 exprv̂pθpa2qq ¨ Îpθqs

ř

ajPA ξj exprv̂pθpajqq ¨ Îpθqs
(27)

By plugging equation (27) into both equation (25) and (26) we obtain

fpai|θq “
ξi exprv̂pθpaiqq ¨ Îpθqs

ř

ajPA ξj exprv̂pθpajqq ¨ Îpθqs
“

f̂ 0paiq exprv̂pθpaiqq ¨ Îpθqs
ř

ajPA f̂
0pajq exprv̂pθpajqq ¨ Îpθqs

(28)

for every ai P A, hence showing the statement.

Step 2. We are left to show that, if the Axioms 1.a, 1.b* and 2 hold, we can
construct a function Î : Θ Ñ R such that equation (17) is satisfied.

For every θ P Θ, define
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P pθq :“ tθ1
P Θ : θ „

ai,aj θ1 for some ai, aj P Au

P 2
pθq :“ tθ1

P Θ : Dθ2
P Θ, θ2

P P pθ1
q X P pθqu

P 3
pθq :“ tθ1

P Θ : Dθ2, θ3
P Θ, θ3

P P pθ2
q X P pθq, θ2

P P pθ1
qu

“ tθ1
P Θ : Dθ2

P Θ, θ2
P P pθ1

q X P 2
pθqu

where the last equality follows from the definition of P 2.
For every θ P Θ, the correspondence P pθq denotes all the states that are payoff-

equivalent to θ conditional on some action pair. The correspondence P 2pθq maps to
the states θ1 that may not belong to P pθq, but are “one step” close to it, that is, there
exists a state θ2 which belong to both P pθq and P pθ1q. Similarly, P 3pθq captures the
idea of states that are “two steps” close to θ.

It immediately follows that P 1pθq Ď P 2pθq Ď P 3pθq for every θ P Θ. Furthermore
P 3pθq “ Θ, that is, all states are at most two steps close to each other. The argument
proceeds as follows. Clearly, P 3pθq Ď Θ. Now, let θ̂ P Θ be any state, we want to
show that θ̂ P P 3pθq. We have that θ̃ :“ θ̂θ1,θ̂N P P pθ̂q since θ̃ „a2,aN θ̂. Furthermore,
θ˚ :“ θ̃θ̃1,θN P P pθ̃q since θ˚ „a1,a2 θ̃. But also θ˚ P P pθq since θ˚ „a1,aN θ by
construction, hence proving the claim.

Let θ̄ P Θ be the reference state. Let Î : Θ Ñ R` be a function such that, for
every θ P Θztθ̄u, Îpθq “ ηpθ, θ1q Îpθ1q, for some θ1 P P pθq, and Îpθ̄q “ 1. In what
follows we show that such a function is well-defined.

We start by providing an overview of the argument. We need to show that Îpθq “

ηpθ, θ1q Îpθ1q “ ηpθ, θ2q Îpθ2q for every θ1, θ2 P P pθq. We do so by considering different
cases for θ: piq θ P P pθ̄q; piiq θ P P 2pθ̄qzP pθ̄q; piiiq θ P P 3pθ̄qzP 2pθ̄q. Within each
case, we show that Îpθq is well-defined in all regions where θ1 may belong to: P pθ̄q,
P 2pθ̄qzP pθ̄q or P 3pθ̄qzP 2pθ̄q. This is accomplished by applying Axiom 1.b* point 2 to
suitably defined intermediate states θ̂, whose existence is proven for each sub case.

We show the claim for |A| “ 3. By inspection of the argument, this does not
constitute an issue as the the proof follows a similar logic for |A| ě 4 and is thus
omitted. Intuitively, if the payoff-equivalence relations between θ, θ1, θ̄ depends on
more than 3 different actions, the argument simplifies as it becomes easier to define
the intermediate states θ̂ as more equivalences are available.

Consider the following cases. piq Let θ P Θ be such that θ P P pθ̄q. By definition,
Îpθq “ ηpθ, θ̄q. Suppose that Îpθq “ ηpθ, θ1q Îpθ1q for θ1 P P pθ̄q X P pθq. Îpθq is well-
defined by Axiom 1.b*. Suppose that Îpθq “ ηpθ, θ2q Îpθ2q for θ2 P pP 2pθ̄qzP pθ̄qq X
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P pθq. In this case

Îpθq “ ηpθ, θ2q Îpθ2q “ ηpθ, θ2q ηpθ2, θ
˚
qηpθ˚, θ̄q “ ηpθ, θ2q ηpθ2, θqηpθ, θ̄q “ ηpθ, θ̄q

where the second equality follows by definition of P 2 for θ˚ P P pθ2q X P pθ̄q, the
third by Axiom 1.b* as θ P P pθ2q X P pθ̄q, and fourth by definition of η. The case
θ3 P pP 3pθ̄qzP 2pθ̄qq X P pθq is vacuous as inconsistent with θ P P pθ̄q. piiq Now, let
θ P Θ be such that θ P P 2pθ̄qzP pθ̄q. By definition, Îpθq “ ηpθ, θ1qÎpθ1q for every
θ1 P P pθq X P pθ̄q, which is well-defined by Axiom 1.b*. The case of θ1 P P pθ̄q X P pθq

is already checked. Suppose that Îpθq “ ηpθ, θ2q Îpθ2q for θ2 P pP 2pθ̄qzP pθ̄qq X P pθq.
We identify two possible sub cases depending on the choice of θ˚ P P pθ2q XP pθ̄q. We
discuss one of the two and we omit the other, as it follows a similar logic. Consider
the following matrix of prizes.

θ θ θ2 θ˚ θ̂
a1 l l l l l

a2 △ ▽ ▽ △ △
a3 ⃝ ’ ♢ ♢ ’

Notice that the states in the matrix are consistent with the properties above. We
have that

Îpθq “ ηpθ, θ2q Îpθ2q “ ηpθ, θ2q ηpθ2, θ
˚
qηpθ˚, θ̄q “ ηpθ, θ̂q ηpθ̂, θ˚

qηpθ˚, θ̄q “ ηpθ, θ̂q ηpθ̂, θ̄q

where the third and fourth equalities follow by Axiom 1.b* as θ̂ P P pθqXP pθ˚qXP pθ̄q.
Suppose that Îpθq “ ηpθ, θ3q Îpθ3q for θ3 P pP 3pθ̄qzP 2pθ̄qqXP pθq. The following matrix
of prizes discusses only one out of six possible sub cases depending on the choice of
θ˚˚ P P pθ˚q X P pθ̄q, where θ˚ P P pθ3q X P pθ˚˚q and both θ˚ and θ˚˚ exists given the
assumption about θ3. The omitted cases follow a similar logic.

θ θ θ3 θ˚ θ˚˚ θ̂
a1 l l ♡ ♡ ♡ l

a2 △ ▽ ▽ ▽ △ ▽
a3 ⃝ ’ ’ ⃝ ⃝ ⃝

Notice that the states in the matrix are consistent with the properties above. We
have that
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Îpθq “ ηpθ, θ3q Îpθ3q “ ηpθ, θ3q ηpθ3, θ
˚
qηpθ˚, θ˚˚

qηpθ˚˚, θ̄q

“ ηpθ, θ̂q ηpθ̂, θ˚
qηpθ˚, θ̂qηpθ̂, θ̄q “ ηpθ, θ̂q ηpθ̂, θ̄q

where the third and fourth equalities follow by Axiom 1.b* as θ̂ P P pθqXP pθ˚qXP pθ̄q.
piiiq Finally, let θ P Θ be such that θ P P 3pθ̄qzP 2pθ̄q. By definition, Îpθq “

ηpθ, θ1qÎpθ1q for every θ1 P P pθq X P 2pθ̄q, which is well-defined by Axiom 1.b* and
by definition of η. The case θ1 P P pθ̄q X P pθq is vacuous as inconsistent with θ P

P 3pθ̄qzP 2pθ̄q and the case θ2 P pP 2pθ̄qzP pθ̄qq X P pθq is already checked. We are left
with Îpθq “ ηpθ, θ3q Îpθ3q for θ3 P pP 3pθ̄qzP 2pθ̄qq X P pθq. Again, the following matrix
of prizes discusses only one out of six possible sub cases depending on the choice of
θ˚˚ P P pθ˚q X P pθ̄q, where θ˚ P P pθ3q X P pθ˚˚q and both θ˚ and θ˚˚ exists given the
assumption about θ3. The omitted cases follow a similar logic.

θ θ θ3 θ˚ θ˚˚ θ̂ θ̃
a1 l ♡ ♡ l l l ♡
a2 △ ▽ ▽ ▽ △ ▽ ▽
a3 ⃝ ’ ♢ ♢ ♢ ⃝ ⃝

Notice that the states in the matrix are consistent with the properties above. We
have that

Îpθq “ ηpθ, θ3q Îpθ3q “ ηpθ, θ3q ηpθ3, θ
˚
qηpθ˚, θ˚˚

qηpθ˚˚, θ̄q

“ ηpθ, θ3q ηpθ3, θ
˚
qηpθ˚, θ̂qηpθ̂, θ̄q “ ηpθ, θ3q ηpθ3, θ̃qηpθ̃, θ̂qηpθ̂, θ̄q

“ ηpθ, θ̃qηpθ̃, θ̂qηpθ̂, θ̄q

where the third equality follows by Axiom 1.b* as θ̂ P XP pθ˚q X P pθ̄q, the fourth by
Axiom 1.b* as θ̃ P XP pθ̂q X P pθ3q, the fifth by Axiom 1.b* as θ̃ P XP pθq.

We are left to check whether the function Î that we have constructed satisfies
equation (17). Let θ1, θ2 P Θ with θ1 „aℓ,ak θ2 for some aℓ, ak P A. Hence, θ1 P P pθ2q.
By definition of η, we have that

ηpθ1, θ2q “ log
„

ξk ¨ fpaℓ|θ1q

ξℓ ¨ fpak|θ1q

ȷ

M

log
„

ξk ¨ fpaℓ|θ2q

ξℓ ¨ fpak|θ2q

ȷ

.

By construction of Î and the argument made in step 2, we have that Îpθ1q “

ηpθ1, θ2qÎpθ2q is well-defined. This implies ηpθ1, θ2q “ Îpθ1q{Îpθ2q, which, together
with the above definition of η, after rearranging, yields (17). This concludes the
proof.
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Proof of Proposition 5. Recall that if ϕ is CARA, i.e., ϕpxq “ ´ 1
γ
e´γx for γ P

R`, we have that ϕ´1pxq “ ´ 1
γ
logp´γxq, ϕ1pxq “ e´γx, pϕ1q´1pxq “ ´ 1

γ
log x. Using

the definitions above, point piq in the statement follows by definition of Iθpfq; point
piiq follows by noticing that Iθpfq ě 1 if and only if pϕ1q´1pEµθ

r pϕ1q
`

Upπ, fq
˘

sq ď

ϕ´1pEµrϕ
`

Upπ, fq
˘

sq as the monotonicity and concavity of ϕmakes pϕ1q´1 decreasing.

Proof of Corollary 1. Assume ϕ is CARA with parameter γ ą 0. Notice that,
by Proposition 4, under a priori homogeneity and unambiguous classes of exchange-
able states the stochastic choice rule satisfying equation (8), call it f˚, is independent
of γ and f˚ P argmaxf V

pγ, µqpfq ´ cpf, ψq for every γ ą 0. Thus,

V pγ, µq
pf˚

q ´ cpf˚, ψq ě V pγ, µq
pfq ´ cpf, ψq

for every stochastic choice rule f , and γ ą 0. By taking limits, we obtain

lim
γÑ`8

V pγ, µq
pf˚

q ´ cpf˚, ψq ě lim
γÑ`8

V pγ, µq
pfq ´ cpf, ψq,

which implies f˚ P argmaxf limγÑ`8 V
pγ, µqpfq ´ cpf, ψq.

Proof of Proposition 6. For every π P Π, we have that

Upπ, f̄q “
ÿ

θPΘ

πpθq
ÿ

aPĀztb1,b2u

f̄pa|θqupa, θq ` upb, θq
ÿ

cPtb1,b2u

f̄pc|θq “ Upπ, fq

since f̄pa|θq “ fpa|θq for every a P Āztb1, b2u and
ř

cPtb1,b2u
f̄pc|θq “ fpb|θq. Thus, the

solutions f and f̄ are associated with the same certainty equivalent, i.e., V pfq “ V pf̄q.
Furthermore, by equation (5), this implies that Iθpfq “ Iθpf̄q for every θ P Θ.

The solutions f and f̄ are also associated with the same entropy costs. To see
this, notice that for any stochastic choice rule g, the entropy-based cost cpg, ρq can
be written as

cpg, ρq “
ÿ

θPΘ

ρpθq
ÿ

aPA

gpa|θq log

ˆ

gpa|θq

g0paq

˙

.

Applying Theorem 1, we have that

cpf̄ , ρq “
ÿ

θPΘ

ρpθq
ÿ

aPĀ

f̄pa|θq log

˜

exprupa, θq Iθpf̄q{λs
ř

aPĀ f̄
0paq exprupa, θq Iθpf̄q{λs

¸

“ cpf, ρq,

where the last equality follows from exprupbi, θq Iθpf̄q{λs “ exprupb, θq Iθpfq{λs for
i P t1, 2u and f 0pbq “

ř

θrf̄
0pb1|θq ` f̄ 0pb2|θqsρpθq “ f̄ 0pb1q ` f̄ 0pb2q.
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Proof of Corollary 2. By equation (7), we have that

ρpθ1|aq

ρpθ1|bq
ě
ρpθ2|aq

ρpθ2|bq
ðñ

ˆ

exprupa, θ1q{λs

exprupb, θ1q{λs

˙Iθ1 pfϕq

ě

ˆ

exprupa, θ2q{λs

exprupb, θ2q{λs

˙Iθ2 pfϕq

.

Applying a logarithmic transformation on both sides of the inequality on the right
yields the desired equivalence.
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