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Abstract

We define and show the existence of trembling hand perfect equilibrium and sta-
tionary Markov perfect equilibrium in infinite games with asymmetric and im-
perfect information. These results rely on the novel notion of sequential absolute
continuity, which extends Milgrom and Weber’s (1985) absolute continuity condi-
tion to dynamic games. Our approach establishes the existence of an equilibrium
in a broad class of games with “noisy informational asymmetries,” in which play-
ers’ private information includes some idiosyncratic noise.
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1 Introduction
We define and show the existence of trembling hand and stationary Markov perfect
equilibrium in a broad class of infinite dynamic games with asymmetric and imperfect
information. Our analysis reveals a key insight: in many games of economic inter-
est, players’ imprecise observations of their opponents’ information—any amount of
idiosyncratic noise suffices—ensures these equilibria exist.

We study a general class of dynamic games that encompasses but is not limited to
multi-stage games. In our framework, a state of the world evolves stochastically based
on previous states and actions, while players receive signals providing information
about the history of the game, which they may not directly observe. The state and
signal spaces are general measure spaces, while each player’s action set is countable.
Players’ payoffs satisfy two properties: an upper bound on each player’s expected
payoff is finite, and payoffs exhibit a form of continuity in actions.

We begin by establishing the existence of constrained equilibria, where players se-
lect each available action with positive probability due to “trembles.” Following Selten
(1975), we define trembling hand perfect equilibria (THPE) as the limit of constrained
equilibria when players’ trembles vanish. This approach ensures sequential rationality,
as we prove that constrained equilibria entail an optimal course of action conditional
on players’ beliefs at private histories. We establish that THPE exist and are sub-
game perfect. We then show that these existence results hold in a broad class of
games where players’ observations include some idiosyncratic noise. Next, we define
a Markovian environment, and establish the existence of stationary Markov perfect
equilibria (MPE), defined as trembling hand perfect equilibria in which each player’s
strategy depends solely on their current payoff-relevant information.

To illustrate the applicability of our results, consider the following class of games
for which we establish the existence of THPE. The prior literature had not ascertained
whether these games possess a sequentially rational equilibrium. At every period, a
state of the world is drawn from some distribution over real vectors. The state
is composed of individual dimensions for each player, each in turn consisting of a
fundamental component and a noise term. Before moving, players observe the history
of action profiles but do not directly observe the current state. Instead, each player
receives a private signal consisting of their own fundamental component plus their
noise term. The fundamental component may be correlated with the previous state
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and may depend on the previous action profile; the noise term is independent of the
fundamental component, independent across periods, and is absolutely continuous
with respect to the Lebesgue measure—for instance, it could follow a multivariate
normal or uniform distribution. After receiving their signals, players simultaneously
choose an action from a finite set, and the game proceed to the next period. Players
have discounted payoffs that depend on both the current state and actions, and need
not be continuous in the state.

The class of games introduced above can naturally represent various economic
applications, which include, among others: (i) sequential oligopolistic competition
where the actions are quantities or prices and signals are idiosyncratic demand shocks
(e.g., Athey et al., 2004; Athey and Bagwell, 2008); (ii) sequential auctions with
interdependent values, where the actions are bids and the signals are informative
about the value that the auctioned good has for each potential buyer (e.g., Jofre-
Bonet and Pesendorfer, 2003); (iii) global games of regime change where players
attack a regime after learning about its strength (e.g., Angeletos et al., 2007).

Our results apply to a broader class of games. In particular, our analysis allows
for: 1) general state and signal spaces; 2) state transitions and payoffs that can depend
on the entire history of states and action profiles; 3) countable action sets, as long as
signals evolve continuously in a specific sense that we describe below; 4) correlation
among signals, provided that the joint distribution of signals is absolutely continuous
with respect to the product of their marginal distributions; 5) payoffs that may be
discontinuous with respect to the history of states, but must be continuous in actions;
6) non-discounted payoffs, provided that the sum across periods of an upper bound
of the players’ per-period expected payoffs is finite; 7) uncertainty about whether
opponents moved in the past, accommodating an unknown order of moves.

The existence of THPE, established in Theorems 1 and 2, hinges on a key assump-
tion we term sequential absolute continuity (SAC). This condition extends Milgrom
and Weber’s (1985) absolute continuity condition for one-period Bayesian games to
dynamic settings. SAC imposes two requirements on the transition probability over
the history of private signal profiles conditional on the action history. First, it must
be absolutely continuous with respect to the product of the marginal probability
measures of each player’s history of private signals. Second, it must be bounded and
continuous in the action history according to a novel norm on transition probabilities,
which implies continuity in the total variation norm.
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To establish the existence of THPE under noisy observations, we consider settings
where each player’s signals consist of a fundamental component, potentially common
across players, and an idiosyncratic noise term. We provide sufficient conditions for
SAC in this case. Proposition 3 shows that the absolute continuity condition of SAC
holds under three assumptions: (i) the joint distribution of the fundamental and noise
components is absolutely continuous with respect to the product of their marginals;
(ii) the joint distribution of the players’ noise terms is absolutely continuous with
respect to the product of their individual marginals; (iii) players cannot perfectly infer
the fundamental component from their observed signals. Additionally, Proposition 4
shows that the boundedness and continuity requirements of SAC are met under two
conditions. First, the fundamental signal must exhibit a weak form of continuity.1

Second, the joint distribution of the private and fundamental signal histories must be
absolutely continuous with respect to the product of the marginal of the fundamental
signal history and a distribution over the private signal history that is independent
of the action history.

A consequence of Propositions 3 and 4, Corollary 1, is that for real-valued signals,
the addition of noise that is absolutely continuous with respect to the Lebesgue mea-
sure, along with certain regularity requirements, guarantees the existence of a THPE.
Notably, this result implies that the addition of even an arbitrarily small amount
of such noise suffices to ensure existence in games where the previous literature has
otherwise demonstrated non-existence. Through two running examples, we illustrate
how adding noise simultaneously resolves two issues: strategic entanglement, which
generates discontinuity of the expected payoffs in players’ strategies, precluding classi-
cal existence arguments; in dynamic settings, the discontinuity of signals with respect
to previous actions, as seen in non-existence examples like that of Harris et al. (1995).
The conditions of Corollary 1 are met by commonly used noise distributions, includ-
ing independent uniform and jointly normal, making our results widely applicable
across various economic models.

Our approach can be extended to the analysis of equilibria in Markov strategies.
To achieve this, we adapt the notion of stationary Markov perfect equilibrium by
defining them as THPE, in which each player’s strategy depends only on the current
payoff-relevant information. To formalize the meaning of payoff-relevant information,

1Specifically, Proposition 4 requires continuity with respect to the weak convergence of proba-
bility measures. See footnote 14 for a formal definition.
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we introduce Markov games. In Markov games, the primitives, such as state and signal
transitions, payoffs, available actions, and active players, are determined solely by
variables specific to the current period. Moreover, the set of states of the world can be
decomposed into two dimensions: a payoff-relevant dimension, which determines each
player’s payoffs and the state transition, and a payoff-irrelevant dimension. Private
signals that provide information about the payoff-relevant state dimension are referred
to as payoff-relevant signals.

For stationary Markov strategies to be optimal, we need to ensure that bygones
are bygones, meaning that players do not find it beneficial to exploit information from
previous periods. We formalize this property by requiring that when all players follow
stationary Markov strategies, each player’s belief about the current payoff-relevant
state of the world depends only on the current payoff-relevant signal component.
We call this assumption Markov information. We complement this condition with
the Markov payoff assumption, which imposes that payoff-relevant signals are as
informative as private histories for computing the expected payoffs.

Theorem 3 establishes the existence of stationary Markov equilibria under a new
assumption which we term Markov absolute continuity (MAC). The latter replaces
SAC in Markov games, modifying it in two ways. First, it applies only to the transition
of payoff-relevant signal profiles. Second, it requires that the absolute continuity
condition holds with respect to the product of the marginal measures over private
signals, taken not only across players but also across periods. Thus, MAC is neither
weaker nor stronger than SAC.

Some applications for which our analysis yields novel existence results in Markov
games are: (1) games with asynchronous moves, including asynchronous revision
games (Kamada and Kandori, 2020), and dynamic cheap talk games (Renault et al.,
2013); (2) stochastic games in which players receive both a public and a private shock
(Balbus et al., 2013), such as in dynamic oligopolies, where the public and private
shocks can be interpreted as demand and firm’s costs, respectively.

Related literature. Despite their widespread applications in economics, establish-
ing equilibrium existence in infinite games with asymmetric information has proven
challenging. Even in one-period Bayesian games with finite actions, the literature has
provided examples that lack equilibria. Simon (2003) presents an example of one such
game that has no Bayes-Nash equilibrium and, similarly, Hellman (2014) and Simon
and Tomkowicz (2018) construct examples that lack even approximate equilibria.
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In the presence of uncountable states, equilibrium existence in dynamic games is
established either by “closing” the strategy space with some form of correlation or
imposing restrictions on the state transition. In games with almost perfect infor-
mation,2 Harris et al. (1995) constructs a two-period game featuring compact action
spaces that lacks a subgame perfect equilibrium and restores existence by adding a
stage-wise public signal that serves as a correlating device. He and Sun (2020) ex-
tends this existence result by requiring the state transition to be atomless. Manelli
(1996) adds cheap talk to a signaling game to obtain existence.

This paper establishes existence by following a different approach. We build upon
the seminal works of Milgrom and Weber (1985) and Balder (1988) by generalizing
their absolute continuity condition to dynamic settings. Furthermore, we provide a
sufficient condition for absolute continuity based on noisy signals, broadening their
framework’s applicability even in static cases.

We contribute to the literature studying sequentially rational equilibria in infinite
dynamic games. The closest work is Myerson and Reny (2020), which introduces the
concept of perfect conditional ε-equilibria, defined as strategy profiles that can be
approximated by a net of conditional ε-equilibria.3 These equilibria eventually assign
positive probability to every possible action and almost every move of nature. Their
limiting distributions, as ε tends to zero, are termed perfect conditional equilibrium
distributions. However, these distributions may not always be induced by a strategy
profile. In contrast, we focus on trembling hand perfect equilibria, which we define
as limits of ε-constrained equilibria. These trembling hand perfect equilibria are
conditional-ε̄ equilibria, with ε̄ vanishing as ε does.4

A vast literature on stochastic games stemming from the seminal work of Shap-
ley (1953) studies the existence of stationary Markov perfect equilibria in settings
where players observe the history of play and the current state, and have discounted
payoffs. In this environment, existence generally requires continuity assumptions on
the transition of the state across periods.5 Levy (2013), and subsequently Levy and

2In games with almost perfect information, players may move simultaneously after perfectly
observing the history of the game.

3In a conditional ε-equilibrium, players optimize their payoffs up to ε utils, conditional on every
positive measure set of private histories.

4See Proposition 6 in Supplemental Appendix B.9.
5Duggan (2012) provides an excellent discussion of these assumptions. Nowak and Raghavan

(1992), Duffie et al. (1994), and Duggan (2012) establish the existence of stationary Markov perfect
equilibria under restrictions on the state transition and other conditions such as payoff-irrelevant
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McLennan (2015), shows that non-existence of stationary Markov perfect equilibria
may arise even in standard stochastic games with finite action sets where the state
transition is absolutely continuous with respect to a fixed measure.

We also intersect the literature on stochastic games with asymmetric information,
which spans from the study of folk theorems to dynamic persuasion (Aumann et al.,
1995; Ely, 2017). Altman et al. (2008) studies the existence of a stationary Nash
equilibrium when each player privately observes the realizations of an associated con-
trolled Markov chain. Balbus et al. (2013) establishes the existence of a stationary
Markov perfect equilibrium in a setting with strategic complementarities in the pres-
ence of public and private shocks. To the best of our knowledge, we are the first to
provide conditions for the existence of trembling hand and stationary Markov perfect
equilibria under general state and signal spaces.

2 Model
We study dynamic games played in countably many periods t ∈ N := {1, 2, . . . }.
Formally, any such game is represented by the following list of objects:

Γ = (N,Ω,M, (Xi, Si, Ai, gi)i∈N , µ, γ),

where
• - N := {1, . . . , n} is a finite set of n players.

- Ω is a measurable set of states of the world, and Si is a measurable set of private
signals for each player i ∈ N . S :=

∏
i∈N Si denotes the set of signal profiles.

- Xi is a countable, compact metric space, endowed with its Borel σ-algebra,
representing the action set of each player i ∈ N . The set of action profiles
is X :=

∏
i∈N Xi, with generic element a = (a1, . . . , an). The set of histories

of action profiles up to period t ∈ N is X t :=
∏

ℓ≤tX, with generic element
at = (a1, . . . , at). For ℓ ≤ t, the element at,(ℓ) ∈ Xℓ denotes the truncation of
history at up to and including period ℓ. The action ati,ℓ corresponds to player
i’s move in period-ℓ action profile atℓ. The sets Ωt, St, and their corresponding
elements, such as ωt,(ℓ) or sti,ℓ, are defined analogously.6

and payoff-relevant noise. Parthasarathy and Sinha (1989), and Nowak (2003) assume stronger
restrictions than Levy (2013) to prove existence. He and Sun (2017) unifies these results by assuming
the “decomposable coarser transition kernel” condition on the state transition.

6For t ≥ 1, we use the notation Y t :=
∏t

ℓ=1 Y for any set Y ; Y 0 := {∅}.
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• M(·) maps each measurable set to its σ-algebra. For instance, M(Ω) denotes
the σ-algebra of measurable subsets of Ω. We endow product spaces with their
product σ-algebra, subsets of measurable spaces with their relative σ-algebra,7

and we assume all singleton sets are measurable.

• The correspondence Ai : ∪t∈NS
t
i ×X t−1

i ⇒ Xi is non-empty closed-valued, weakly
measurable,8 and specifies the actions available to player i ∈ N as a function of i’s
private signal and action history.

• The function gi : ∪t∈NΩt ×X t → R represents the flow payoff received by player
i ∈ N as a function of the history of the states of the world and action profiles. It
is measurable and bounded.

• The map µ : ∪t∈N∪{0}Ω
t × X t → ∆(Ω) is the state transition probability9 which

determines the probability of a new state as a function of the history of the states
of the world and action profiles. That is, µ(Z|ωt, at) is the probability that the
period t+ 1-state belongs to the set Z ∈ M(Ω) given (ωt, at) ∈ Ωt ×X t.

• The signal transition function γ : ∪t∈NΩt×X t−1 → S is measurable and determines
the private signal profiles as a function of the history of the states of the world
and action profiles. Denote by γi : ∪t∈NΩt ×X t−1 → Si the projection of γ onto
i’s private signal in Si.

Following the representation of Myerson and Reny (2020), we assume that the
state of the world evolves stochastically, while signals are deterministic functions of
the history of the game. As the state space is general, this representation is equivalent
to an alternative framework in which the signal realization is also stochastic.

For ease of exposition, in the main body of the paper, we focus on games where
players are informed about whether their opponents have moved in the past, i.e.,
they observe the period t ∈ N in which the game is being played. In an extension,
we model games where the order of moves may be unknown. This is achieved by
restricting the information available in private histories, which do not record any
information from inactive periods. See Section 6 for more details.

7For every Z ∈ M(Y ), Z’s relative σ-algebra is M(Z) = {B ∩ Z|B ∈ M(Y )}.
8A correspondence ϕ : Z ⇒ Y that maps a measurable space Z to a topological space Y is

weakly measurable if, for every closed subset B ⊆ Y , the set {z ∈ Z : ϕ(z) ⊆ B} is measurable. See
Definition 18.1 in Aliprantis and Border (2006) and the ensuing discussion.

9For measurable spaces Z and Y , the function ξ : Z → ∆(Y ) is a transition probability if ξ(B|z)
is measurable in z for every B ∈ M(Y ); ∆(Y ) is the set of probability measures over Y . A transition
measure is defined analogously when ξ : Z → M(Y ) and ξ(·|z) is a measure for every z ∈ Z.
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2.1 Histories, Strategies, and Expected Payoffs

Histories. For t ∈ N, a period-t history h = (ωt, at−1) is composed of a history of
the states of the world ωt ∈ Ωt, and a history of action profiles at−1 ∈ X t−1. The set
Ht contains every period-t history, and H := ∪t∈N∪{0}H

t contains every history.

Private Histories. For i ∈ N , t ∈ N, (sti, a
t−1
i ) ∈ Sti × X t−1

i is a period-t private
history of player i. Denote by Ht

i := Sti × X t−1
i the set of period-t private histories

of player i, and by Hi := ∪t∈NHt
i the set of all private histories of player i. The

set HAi
:= {(sti, at−1

i ) ∈ Hi| at−1
i,ℓ ∈ Ai(s

t,(ℓ)
i , a

t−1,(ℓ−1)
i ), ℓ ≤ t − 1} denotes player i’s

available private histories according to the action correspondence Ai.

Strategies. A strategy of player i ∈ N is a transition probability σi : HAi
→ ∆(Xi)

that maps i’s available private histories to probability distributions over i’s actions
satisfying suppσi(hi) ⊆ Ai(hi) for every hi ∈ HAi

. Denote by Σi the set of player i
strategies,10 and by σ = (σj)j∈N ∈∏j Σj := Σ a strategy profile.

Conditional measures. For i ∈ N , conditional on player i’s actions aτi ∈ Xτ
i and

signals sti ∈ Sti , for t, τ ∈ N∪{0} with τ ≤ t, the strategy σi ∈ Σi induces a transition
probability over player i’s action history ati ∈ X t

i as follows

pi(a
t
i|sti, aτi , σi) :=

∏
ℓ=τ+1,...,t

σi
(
ati,ℓ|st,(ℓ)i , a

t,(ℓ−1)
i

)
(1)

if (sti, a
t,(t−1)
i ) ∈ HAi

, at,(τ)i = aτi ; zero otherwise.11 That is, pi(ati|sti, aτi , σi) is the
probability of i’s actions in history ati that are a continuation of aτi if sti is realized
and i plays according to σi. The strategy profile σ ∈ Σ induces p(at|st, aτ , σ) :=∏

j∈N pj(a
t
j|stj, aτj , σj) for (st, at) ∈ St ×X t, aτ ∈ Xτ . When τ = 0, hence aτ = ∅, we

write pi(ati|sti, σi) := pi(a
t
i|sti, ∅, σi) and p(at|st, σ) := p(at|st, ∅, σ).

Conditional on a history of action profiles at−1 ∈ X t−1 and states of the world
ωτ ∈ Ωτ , for t, τ ∈ N ∪ {0} with τ≤t, the probability measure over Ωt induced by
the state transition probability µ is

dµtω(ω
t|ωτ , at−1) :=

t−1∏
ℓ=τ

dµ(ωtℓ+1|ωt,(ℓ), at−1,(ℓ))

10Lemma 4 shows that the set of strategies is non-empty. That is, there exists a measurable
selector, with support on the available actions set, as a function of hi ∈ Hi. This result follows from
the weak measurability of Ai.

11We use the convention that
∏τ−1

t=τ yt = 1 for (yt)t∈N∪{0} sequence in R, and τ ∈ N.

9



if ωt,(τ) = ωτ ; zero otherwise. When τ = 0, hence ωτ = ∅, we write dµtω(ωt|at−1) :=

dµtω(ω
t|∅, at−1).

For every t ∈ N, (ωt, at−1) ∈ Ht, denote the history of realized signals up to
period t by γt(ωt, at−1) := (γ(ωt,(1)), γ(ωt,(2), at−1,(1)), · · · , γ(ωt, at−1)). To ease no-
tation, we write p(at|ωt, σ) and p(at|ωt, aτ , σ), instead of p(at|γt(ωt, at,(t−1)), σ) and
p(at|γt(ωt, at,(t−1)), aτ , σ), respectively.

For at−1 ∈ X t−1, the measure µtω(·|at−1) and the function γ induce a probability
measure over private signal profiles, µts(B|at−1) := µtω({ωt : γt(ωt, at−1) ∈ B}|at−1),
for B ∈ M(St). Let µtsi(·|at−1) be the marginal of µts on player i’s signals in Sti .

Finally, for every t ∈ N, we assume throughout the existence of a transition prob-
ability µtsi|si : S

t−1
i ×X t−1 → ∆(Si) satisfying dµtsi(s

t
i|at−1) = dµtsi|si(s

t
i,t|st,(t−1)

i , at−1)×
dµt−1

si
(s
t,(t−1)
i |at−1,(t−2)).

Expected payoffs. For every t ∈ N, a strategy profile σ ∈ Σ, a signal his-
tory function γt, and the state transition probability µ induce a probability P t(·|σ)
over Ωt × X t. Player i’s expected payoff is Ui(σ) :=

∑
t∈N Ui,t(σ), where Ui,t(σ) :=∫

Ωt×Xt gi(ω
t, at) dP t(ωt, at|σ).

Similarly, for τ ∈ N, we define player i’s continuation expected payoff from σ ∈
Σ after history (ωτ , aτ−1) ∈ Hτ as Ui(σ|ωτ , aτ−1) :=

∑
t≥τ Ui,t(σ|ωτ , aτ−1), where

Ui,t(σ|ωτ , aτ−1) :=
∑

at∈Xt

∫
Ωt

gi(ω
t, at) dP t(ωt, at|σ, ωτ , aτ−1) and P t(·|σ, ωτ , aτ−1) is a

probability over Ωt ×X t induced by σ and (ωτ , aτ−1).
We impose two requirements on players’ expected payoffs throughout our analysis.

First, we assume that a bound on the sum of per-period expected payoffs is finite.
Formally, for each i ∈ N , ∑

t∈N

sup
σ∈Σ

∣∣Ui,t(σ)∣∣ <∞. (boundedness)

This condition is satisfied if, for each i ∈ N , the following stronger condition holds∑
t∈N

sup
(ωt,at)

|gi(ωt, at)| <∞. (2)

Notice that (2) holds in games with discounted payoffs, i.e., gi(ωt, at) = δt · ui(ωt, at),
where δ ∈ (0, 1) and ui(ωt, at) is bounded for i ∈ N , (ωt, at) ∈ Ωt×X t. Moreover, (2)
is also satisfied in games where payoffs decrease in t slower than geometrically, e.g.,
gi(ω

t, at) = 1
t2
· ui(ωt, at). In general, our boundedness condition is weaker than (2)

as it holds in a class of games with stochastic move opportunities that end in finite
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time with probability 1 and have bounded expected length, while (2) does not (see
Lemma 3).12

We also require expected payoffs conditional on past signals to be continuous in
past actions, which holds immediately when the action set, X, is finite. If X is
infinite, assume there is a transition probability µtω|s : S

t ×X t−1 → ∆(Ωt) such that
dµtω(ω

t|at−1) = dµtω|s(ω
t|st, at−1) × dµts(s

t|at−1), for t ∈ N. For every i ∈ N , t ∈ N,
the function ĝi,t : St ×X t → R defined as

ĝi,t(s
t, at) :=

∫
Ωt

gi(ω
t, at) dµtω|s(ω

t|st, at,(t−1)) (continuity)

is continuous in at for every st in a µts-full measure set.13 Notice that we require payoff
continuity with respect to the history of action profiles, not signals or states. This
assumption is weaker than continuity in the action history when the state transition is
modeled as Nature’s moves, which implicitly assumes continuity in the state as well.
This latter form of continuity is also present in the literature; it is assumed by Harris
et al. (1995), He and Sun (2020), and Myerson and Reny (2020), among others.

2.2 An Application

We preview some of our findings by formalizing an interesting class of games for
which we establish the existence of a sequentially rational equilibrium. Existence in
this class follows from Corollary 1 in Section 3.3.

Application 1 (Dynamic games with Lebesgue signals). Each state of the world
ω ∈ Ω can be written as ω = (ŝ, ϵ):
- ŝ = (ŝi)i∈N , where ŝi ∈ Rℓi , ℓi ∈ N, represents the fundamental signal component

of player i ∈ N ;

- ϵ = (ϵi)i∈N , where ϵi ∈ Rℓi represents the idiosyncratic noise term of player i ∈ N .

Each player i ∈ N observes a private signal γi(ŝ, ϵ) = ŝi + ϵi, which combines their
fundamental component and noise term. Furthermore, each ŝi and ϵi may or may not
affect payoffs.

Assume that: (a) for every t ∈ N, there exists a continuous and bounded density
f t(ŝt, ϵt1, . . . , ϵ

t
n, a

t−1) such that the joint distribution of ŝt and ϵt, conditional on the
12Inspired by Fudenberg and Levine (1983), one can define continuity at infinity in our setting

by requiring supσ,σ′ |
∑∞

t=τ Ui,t(σ)−Ui,t(σ
′)| → 0 as τ → ∞. Our boundedness condition is stronger

as it implies
∑∞

t=τ supσ,σ′ |Ui,t(σ)− Ui,t(σ
′)| → 0 as τ → ∞.

13For every t ∈ N, B ∈ M(St) is a µt
s-full measure set if µt

s(B|at−1) = 1 for every at−1 ∈ Xt−1.
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action profile history at−1 ∈ X t−1, can be written as

dµtŝ,ϵ(ŝ
t, ϵt1, . . . , ϵ

t
n|at−1) = f t(ŝt, ϵt1, . . . , ϵ

t
n, a

t−1) dµtŝ(ŝ
t|at−1)× dλt(ϵt)

where µtŝ denotes the marginals with respect to ŝt and λt denotes the Lebesgue mea-
sure over real vectors, respectively; (b) for every i ∈ N , and private signal sti ∈ Sti ,
the set of fundamental components which, combined with some noise term, can yield
sti has positive measure; (c) for every t ∈ N, dµtŝ(·|at−1) is continuous in the ac-
tion profile history at−1 ∈ X t−1 in the topology of weak convergence of probability
measures.14 ◀

The class of games included in Application 1 encompasses a wide range of eco-
nomic applications. It can model dynamic oligopolistic competition (Athey et al.,
2004; Athey and Bagwell, 2008), where firms repeatedly interact in a market, set-
ting quantities or prices based on idiosyncratic demand signals. The framework also
applies to sequential auctions with interdependent values (Jofre-Bonet and Pesendor-
fer, 2003; Aoyagi, 2003; Skrzypacz and Hopenhayn, 2004), where buyers submit bids
informed by signals about their value for the auctioned good. Moreover, it extends
to contexts such as currency attacks (Morris and Shin, 1998), where strategic deci-
sions are informed by private signals about fundamental values, and global games of
regime change (Angeletos et al., 2007), where players decide to attack a regime based
on signals about its evolving strength. Notice that the noise structures in these appli-
cations conform to our assumptions, typically featuring additive independent normal
or uniform noise terms.

2.3 Examples: Payoff Discontinuity and Non-existence

Without additional requirements on signal transitions, equilibrium existence is not
guaranteed. The following two examples illustrate potential payoff discontinuities in
infinite games with asymmetric information, emphasizing how these discontinuities
can lead to non-existence. The first example demonstrates that players’ payoffs may
be discontinuous in their strategies, a phenomenon known as strategic entanglement.15

14A sequence of probability measures over Y , (ρn)n∈N, ρn ∈ ∆(Y ), converges weakly to ρ ∈ ∆(Y )
if limn→+∞

∫
fdρn =

∫
fdρ for every bounded, continuous function f : Y → R.

15This issue was identified by Simon and Stinchcombe (1989), Börgers (1991), and Harris et al.
(1995), among others. The term “strategic entanglement” was coined by Myerson and Reny (2020).
Example 1 is analogous to Example 2 in Milgrom and Weber (1985), Example 2.1 in Cotter (1991),
and Example 2.1 in Stinchcombe (2011).
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This discontinuity prevents the application of standard fixed-point arguments to prove
existence. The second example adapts the non-existence case by Harris et al. (1995)
to our framework with countable actions. We revisit these examples later to provide
intuition for our results.

Example 1 (Strategic entanglement). Consider a two-player game where both play-
ers observe a public signal s, drawn from a uniform in [0, 1], before they choose an
action A or B. The following sequence of strategies generates a payoff discontinuity.
For each player i ∈ {1, 2}, and n ∈ N, define σni (A|s) = 1 if s ∈ [(k− 1)/2n, k/2n] for
odd k, and σni (A|s) = 0 otherwise. Players choose the same action as a function of
the signal, but as n increases, players switch actions over progressively finer intervals.
Figure 1 illustrates the first three strategies in this sequence.

1

s

0

n = 1

σ1
i (A|s) = 1 σ1

i (B|s) = 1

10

n = 2

s
σ2
i (A|s) = 1 σ2

i (B|s) = 1σ2
i (B|s) = 1 σ2

i (A|s) = 1

1

s

0

n = 3

σ3
i = A σ3

i = B σ3
i = A σ3

i = B σ3
i = A σ3

i = B σ3
i = A σ3

i = B

Figure 1: Sequence of strategies generating strategic entanglement.

Each player i’s limit strategy σ∗
i must choose A and B with equal probability,

independently of s.16 However, the limit of the probability over action profiles σn1 (·|s)·
σn2 (·|s) yields a perfectly correlated distribution: (A,A) and (B,B) each occur with
probability 1/2, independent of s. Since limn→∞ σn1 (a1|s)·σn2 (a2|s) ̸= σ∗

1(a1|s)·σ∗
2(a2|s)

for (a1, a2) ∈ {A,B}2 the players’ expected payoffs, which depend on the probability
over action profiles, are discontinuous with respect to their strategies. Consequently,
the best response correspondence may fail to have a closed graph, invalidating the
conditions required for Nash’s classical fixed-point argument. ◀

Strategic entanglement has substantive implications for equilibrium existence. For
instance, Simon (2003), Hellman (2014), and Simon and Tomkowicz (2018) construct
one-period Bayesian games with finite actions that lack any Bayes-Nash equilibrium.

While strategic entanglement can occur in static settings, the following exam-
ple illustrates a distinct form of discontinuity that emerges in multi-period games,
potentially leading to equilibrium non-existence.

16Formally, σ∗
i is the weak limit in the space of probability measures.
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Example 2.1 (Harris, Reny, and Robson (1995)). Consider the following game. In
the first period, player A chooses action a ∈ A := ∪n∈N{−1/n, 1/n}∪ {0} and player
B action b ∈ {L,R}, while in the second period, after observing the moves previously
occurred, players C and D choose c ∈ {L,R} and d ∈ {L,R}, respectively. Players
C and D’s payoff functions are identical and depend only on action a: Playing L

yields a payoff of −a and R of a. That is, the second period players strictly prefer to
play L if a < 0, R if a > 0, and are indifferent otherwise. Player B wants to guess
the future choice of player C and gets a payoff of 1{c=L} − 1{c=R} if b = L and of
2 ·
(
1{c=R} − 1{c=L}

)
if b = R. Player A’s payoff is as follows

−|a| · 1{b=c} + |a| · 1{b̸=c} − 10 · 1{c̸=d} − 1
2
|a|2.

If B and C make the same choice, A obtains a payoff of −|a|, and |a| otherwise; if C
and D make different choices, A obtains a negative payoff of −10; A gets −1

2
|a|2.17

As argued by Harris et al. (1995), this game does not possess any subgame perfect
equilibrium. In our case, A’s action set is countable rather than uncountable, but their
argument for non-existence applies unaltered. Intuitively, A would like to minimize
the probability that B guesses correctly while ensuring that C and D are perfectly
coordinated. This can be achieved if A randomizes uniformly between a positive and
a negative number, say a = δ with probability 1

2
and a = −δ with probability 1

2
.

However, for any δ ∈ A with δ ̸= 0, A incurs the cost 1
2
|δ|2 > 0, which approximates

zero as δ → 0. In the limit, A’s mixed strategy becomes degenerate, which does not
allow C and D to coordinate their actions in a random way.18 ◀

3 Equilibrium Existence
We now introduce sequential absolute continuity (SAC), the main assumption of our
analysis. This condition restricts the transition of private signal profiles by requiring:
(a) absolute continuity with respect to the product of the marginal measures of each
player’s private signals; (b) boundedness and continuity in the action profile history
according to a novel norm, which implies continuity in the total variation norm.

Let Z be a countable set and Y a measurable space. The strong total variation
17Notice that the game falls within our framework by assuming there is no payoff-relevant state,

i.e., Ω is a singleton, and second-period players receive a perfectly informative signal about the
moves that previously occurred, i.e., sC = sD = (a, b).

18See Supplemental Appendix B.7 for a detailed explanation.
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norm of a transition measure ξ : Z → M(Y ) is

∥ξ∥SV := sup

{∑
j∈I

|ξ(Yj|zj)|
∣∣{Yj}j∈I ∈ π(Y ), {zj}j∈I ⊆ Z

}
,

where π(Y ) denotes the set of finite measurable partitions of Y . For a subset Ž ⊆ Z,
let ξ|Ž be the restriction of ξ to Ž, and, for an element ž ∈ Z, let ξž(·|z) := ξ(·|ž) for
every z ∈ Z. We say that ξ is continuous in Z in the strong total variation norm if,
for every z∗ ∈ Z and ε > 0, there is δ > 0 such that

∥∥(ξ − ξz
∗
)|B(z∗,δ)

∥∥
SV

< ε.
Boundedness and continuity in the strong total variation norm guarantees that

whenever the transition probability admits a density with respect to some z-independent
measure, such a density is also bounded by a z-independent, L1 function on Y and
continuous in Z (see Proposition 5). A density satisfying these conditions is called a
Carathéodory integrand.19

Notice that ξ is continuous in the total variation norm if
∥∥ξz − ξz

∗∥∥
SV

→ 0 as
z → z∗, i.e., as z approaches z∗ it cannot vary across partition elements. Therefore,
this form of continuity is weaker than continuity in the strong total variation norm.20

Assumption (Sequential absolute continuity). The following holds:

(a) For every t ∈ N, at−1 ∈ X t−1, µts(·|at−1) is absolutely continuous with respect to
the product measure

∏
i∈N µ

t
si
(·|at−1);

(b) For every t ∈ N, µts is bounded, and continuous in X t−1 in the strong total
variation norm.

SAC extends the absolute continuity condition of Milgrom and Weber (1985) to
dynamic games. In their static setting, signals correspond to types, and the absolute
continuity condition requires the joint type distribution to be absolutely continuous
with respect to the product of players’ marginal type distributions, coinciding with
SAC(a). SAC(b) holds trivially in one-period games as X0 = ∅.

In a dynamic environment, sequential absolute continuity imposes two key re-
quirements: (a) Absolute continuity must hold conditional on every possible history
of play. This means that the joint distribution of players’ signals, given any sequence
of past actions, can be expressed in terms of the product of individual players’ sig-
nal distributions; (b) The distribution of signals must be continuous with respect to

19See footnote 36 for the formal definition of a Carathéodory integrand.
20Example 4 in Supplemental Appendix C.1 constructs a norm that is continuous in total variation

but discontinuous in strong total variation.

15



past play and bounded in the strong total variation norm. This condition implies
continuity in both the total variation norm and set-wise continuity.21 Consequently,
any game violating these weaker forms of continuity necessarily violates continuity
in the strong total variation norm. The latter is the case in Example 2.1, where the
distribution of signals fails to be set-wise continuous (see Example 2.2).

SAC is always satisfied if the action and signal spaces are not too large. For
instance, SAC(a) holds if the set of signals Si is countable for all but at most one
player, while SAC(b) holds if, for every player i ∈ N , the action set Xi is finite.

In general, even with finite action sets, SAC restricts the information structure of
the game. For instance, when the state is drawn from a non-atomic distribution on the
reals, players cannot commonly observe the state without violating SAC(a). Example
1 illustrates this violation: µ1

s(D) = 1 ̸= 0 = µ1
s1
× µ1

s2
(D), where D = {(s1, s2) ∈

[0, 1]2|s1 = s2} is the diagonal set, and each µsi is uniform on [0, 1], i ∈ {1, 2}.

3.1 Constrained Equilibrium

We define a constrained equilibrium that must (i) put a positive weight on each
available action, and (ii) be optimal within the set of constrained strategies given the
constrained strategies of the opponents.

For every ε > 0, a measurable function ε̃i : {(hi, ai)|hi ∈ Hi, ai ∈ Xi} → (0, 1)

is an ε-tremble of player i ∈ N if
∑

ai∈Ai(hi)
ε̃i(hi, ai) < ε for every hi ∈ Hi, and

ε̃i((s
t
i, a

t−1
i ), ai,t) is continuous in (at−1

i , ai,t) ∈ (Xi)
t for every sti ∈ (Si)

t. We denote
by ε̃ = (ε̃i)i∈N an ε-tremble profile, by E(ε) the set of ε-tremble profiles, and by
E := ∪ε>0E(ε) the set of ε-tremble profiles for any positive ε.

Given ε̃ ∈ E, a strategy profile is ε̃-constrained if, at each private history hi ∈ HAi
,

each player i ∈ N puts at least ε̃i(hi, ai) weight on each action ai ∈ Ai(hi). We
denote by Σi(ε̃) the set of player i’s ε̃-constrained strategies, and by Σ(ε̃) the set of
ε̃-constrained strategy profiles.

Definition 1. Let ε̃ ∈ E. An ε̃-constrained strategy profile σ ∈ Σ(ε̃) is an ε̃-
constrained equilibrium if, for every player i ∈ N ,

Ui(σ) ≥ Ui(σ
′
i, σ−i) ∀σ′

i ∈ Σi(ε̃).

21Formally, set-wise continuity requires that, for each S̃ ∈ M(St) and each sequence am → a, we
have µt

s(S̃ | am) → µt
s(S̃ | a).
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Theorem 1. Let Γ be a dynamic game that satisfies sequential absolute continuity.
For every ε̃ ∈ E, Γ has an ε̃-constrained equilibrium.

The proof of our main theorem builds upon Balder’s (1988) argument, but is
technically involved and consists of the following key steps. First, we identify each
player i’s constrained strategy, σi, with its induced transition probabilities over ac-
tion histories, pi(·|·, σi). We endow each player’s strategy space, now represented as
transition probabilities, with the coarsest topology that makes every expected payoff
functional continuous in transition probabilities—a topology Balder (1988) terms the
weak topology. Equipped with the product topology, the strategy space is both convex
and compact, and the best response correspondence is convex-valued.

Next, we demonstrate that each player’s expected payoff is continuous in strate-
gies, a result implied by sequential absolute continuity. For every i ∈ N , t ∈ N,
at−1 ∈ X t−1, SAC(a) allows us to write

dµts(s
t
1, . . . , s

t
n|at−1) = f(st1, . . . , s

t
n, a

t−1) dν1(s
t
1)× . . .× dνn(s

t
n), (3)

where each νi ∈ ∆(Sti ) is a probability measure, and f is a density function. Proposi-
tion 5 establishes that, whenever µts(·|at−1) can be written as in equation (3), SAC(b)

holds if and only if the density f is a Carathéodory integrand. This implies that,
if µts(·|at−1) has a density that is a Carathéodory integrand with respect to one
product measure, densities with respect to any other product measure will also be
Carathéodory integrands.22 Therefore, equation (3) and our continuity condition im-
ply that players’ expected payoffs can be written as the integral of Carathéodory
integrands over a product measure over players’ signals. Theorem 2.5 in Balder
(1988) then implies the continuity of expected payoffs, ensuring the non-emptiness
and closed-graph properties of the best-response correspondence. Hence, SAC pre-
vents the strategic entanglement of Example 1.

Notice that we define the topology over transition probabilities on action histo-
ries, rather than period-by-period behavioral strategies, to capture potential strategic
entanglement of each player’s strategy across periods. If the topology were defined
over behavioral strategies, continuity would not follow.

With these properties established, we invoke the Kakutani-Fan-Glicksberg fixed
22To the best of our knowledge, we are the first to characterize the continuity properties of its

supporting densities via continuity with respect to a norm. Our results show that continuity with
respect to the total variation norm is not sufficient to ensure continuity of the density.
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point theorem23 to prove the existence of a fixed point of the best response correspon-
dence over transition probabilities. Finally, we recover the equilibrium strategy from
this fixed point by computing the probability of a sequence of actions up to a given
period and dividing it by the probability of the sequence up to the previous period.

We next investigate the sequential rationality properties of constrained equilibria.
In particular, we show that every constrained equilibrium σ prescribes an optimal
course of action for each player, conditional on any set of private histories.

For every player i ∈ N , and period t ∈ N, define the function ĥti : H
t → Ht

i as
ĥti(ω

t, at−1) := (γti(ω
t, at−1), at−1

i ). This function projects the full history (ωt, at−1) ∈
Ht onto player i’s corresponding private history. For every σ ∈ Σ, Z ∈ M(Ht

i ),
the probability that player i’s private history belongs to Z under σ is Pi(Z|σ) :=

P t((ĥti)
−1(Z)|σ), where abusing notation P t(·|σ) denotes the probability measure over

Ht induced by σ. Whenever Pi(Z|σ) > 0, we define player i’s period-t beliefs over
C ∈ M(Ht) conditional on Z as

P t
i (C|Z, σ) =

P t
(
C ∩ (ĥti)

−1(Z)|σ
)

Pi(Z|σ)
.

Finally, for every pair of strategy profiles σ, σ̂ ∈ Σ, and Z ∈ M(Ht
i ), t ∈ N, player

i’s expected payoff conditional on Z from σ and σ̂ is defined as

Ui(σ̂|Z, σ) :=
∫
Ht

Ui(σ̂|ωt, at−1) dP t
i (ω

t, at−1|Z, σ),

where σ and σ̂ determine the conditional belief and the expected payoff, respectively.24

Given an ε-tremble, an ε̃-constrained strategy profile is an ε̃-constrained condi-
tional equilibrium if it tests each player’s rationality at every set of private histories
occurring with positive probability.

Definition 2. A strategy profile σ ∈ Σ(ε̃), for ε̃ ∈ E, is an ε̃-constrained conditional
equilibrium, if, for every i ∈ N , t ∈ N and Z ∈ M(Ht

i ) satisfying Pi(Z|σ) > 0,

Ui(σ|Z, σ) ≥ Ui(σ
′
i, σ−i|Z, σ) ∀σ′

i ∈ Σi(ε̃).

Proposition 1. If ε̃ ∈ E, and σ is an ε̃-constrained equilibrium, then σ is an
ε̃-constrained conditional equilibrium.

23Corollary 17.55 in Aliprantis and Border (2006).
24Alternatively, we can define σ̂ as a continuation strategy of σ after private histories in Z.

18



3.2 Trembling Hand Perfect Equilibrium

Inspired by Selten’s (1975) seminal work on finite games, we define trembling hand
perfect equilibrium as the limit of constrained strategies as their ε-trembles vanish.
Consider a sequence (εn)n∈N in R+ converging to zero, and a corresponding sequence
of ε̃n-constrained equilibria σn, where ε̃n ∈ E(εn). Theorem 1 guarantees the existence
of such sequences. As with constrained strategies, where we use transition probabil-
ities to obtain continuity of payoffs, we need to construct the limit strategy from
the limit of transition probabilities. However, this approach encounters difficulties as
εn → 0. While constructing strategies from transition probabilities is straightforward
for ε-constrained strategies, a challenge arises when the limit strategy may assign zero
probability to some action histories. In such cases, the previous construction becomes
undefined along these paths.

To address this challenge, we introduce non-vanishing transition probabilities that
preserve information about strategies even after zero-probability histories. These
probabilities are analogous to those used in the ε-constrained case but are well-
defined in the limit. We then infer the limit strategy by taking the limits of these
non-vanishing probabilities, allowing us to characterize the trembling hand perfect
equilibrium even in cases where some histories become infinitely unlikely.

For every i ∈ N , t ∈ N, let αti be a probability measure over Sti . Consider a
sequence of transition probabilities (λn)n∈N, where λn : Sti → ∆(X t

i ). We say that
(λn)n∈N converges to λ∗ in the weak topology of (Sti ×X t

i , α
t
i) if for every Carathédory

integrand ϕi on (Sti ×X t
i , α

t
i), the following convergence holds∫

St
i

∑
ati∈Xt

i

ϕi(s
t
i, a

t
i)λ

n(ati|sti) dαti(sti) →
∫
St
i

∑
ati∈Xt

i

ϕi(s
t
i, a

t
i)λ

∗(ati|sti) dαti(sti).

For every i ∈ N, t ∈ N, define the function ai over (sti, a
t,(t−1)
i ) ∈ HAi

for any
given σi ∈ Σi as follows

ai(s
t
i, a

t
i;σi) :=

{
a
t,(τ)
i |τ = min

{
τ̂ ≤ t− 1|Πt−1

ℓ≥τ̂+1σi(a
t
i,ℓ|st,(ℓ)i , a

t,(ℓ−1)
i ) > 0

}}
.

This function truncates ati up to period τ , which is the latest period before t − 1

where player i’s action ati,τ has zero probability under strategy σi, as a function of i’s
signals. In particular, if σi(ati,τ̃

∣∣st,(τ̃)i , a
t,(τ̃−1)
i ) > 0, for every τ̃ ≤ t − 1, then τ = 0,

and if σi(ati,τ̃
∣∣st,(τ̃)i , a

t,(τ̃−1)
i ) = 0, for every τ̃ ≤ t− 1, then τ = t− 1

For every i ∈ N , t ∈ N, we define a reference measure for player i as νti ∈ ∆(Sti )

satisfying:
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- For each at−1 ∈ X t−1, µtsi(·|at−1) is absolutely continuous with respect to νti ;

- There exists a transition probability νi,t : St−1
i → ∆(Si) such that dνti (sti) =

dνi,t(s
t
i,t|st,(t−1)

i )× dνt−1
i (s

t,(t−1)
i ).

A reference measure satisfying these conditions can always be constructed in our
environment.25

Definition 3. A strategy σ∗ ∈ Σ is a trembling hand perfect equilibrium if:

(i) There exist sequences (εn)n∈N in R+, (ε̃n)n∈N in E, and (σn)n∈N in Σ satisfying:

• ε̃n ∈ E(εn) for each n ∈ N,

• σn is a ε̃n-constrained equilibrium,

• limn→∞ εn = 0;

(ii) For every i ∈ N , and τ, t ∈ N with τ ≤ t, there exist a transition probability
p∗i (·|·, aτi ) : Sti → ∆(X t

i ), for aτi ∈ Xτ
i , and a reference measure νti , such that:

• pi(·|·, aτi , σni ) converges to p∗i (·|·, aτi ) in the weak topology of (Sti ×X t
i , ν

t
i ),

• For (sti, a
t,(t−1)
i ) ∈ HAi

and at,(τ)i = ai(s
t
i, a

t
i;σi):

σ∗
i

(
ati,t|sti, at,(t−1)

i

)
=

p∗i
(
ati|sti, at,(τ)i

)
p∗i
(
a
t,(t−1)
i |st,(t−1)

i , a
t,(τ)
i

) (4)

This definition characterizes a trembling hand perfect equilibrium (THPE) as the
limit of a sequence of ε̃n-constrained equilibria (σn)n∈N as the trembles εn vanish,
extending Selten’s (1975) notion of perfect equilibrium to infinite games. For each
player i ∈ N , the limit strategy σ∗

i is constructed from the weak limits p∗i of the
transition probabilities induced by σni . Specifically, σ∗

i is defined in equation (4) as
the ratio of these limiting probabilities, where the numerator is positive as it captures
the probability of action histories following the last action with zero probability in the
limit strategy. This construction preserves information about off-path play and, under
SAC, ensures convergence of players’ payoffs to the limit payoffs, thereby guaranteeing
subgame perfection (Proposition 2). Our notion of convergence coincides with Selten’s
pointwise convergence in finite games, while extending naturally to infinite settings.

25Define, for instance, νi,t : St−1
i → ∆(Si) as dνi,t(si,t|st−1

i ) :=
∑

at−1∈Xt−1 ξi(a
t−1) ·

dµt
si|si(si,t|s

t−1
i , at−1) where ξi is an arbitrary collection of strictly positive weights, i.e., for every

t ∈ N and at−1 ∈ Xt−1, ξi(at−1) > 0 and
∑

at−1∈Xt−1 ξi(a
t−1) = 1.

20



Theorem 2. Let Γ be a dynamic game that satisfies sequential absolute continuity.
Then, Γ has a trembling hand perfect equilibrium.

The following result shows that a THPE is subgame perfect and, therefore, a Nash
equilibrium.

A strategy profile σ∗ = (σ∗
i )i∈N is a Nash equilibrium (NE) if no player can uni-

laterally deviate to improve their payoff. Formally, for every i ∈ N and σ′
i ∈ Σi,

Ui(σ
∗) ≥ Ui(σ

′
i, σ

∗
−i).

A history (ωt, at−1) ∈ H is the root of a proper subgame if it uniquely deter-
mines each player’s private history. Formally, for every (ω̃t, ãt−1) ∈ H, t ∈ N, if
(γti(ω

t, at−1), at−1
i ) = (γti(ω̃

t, ãt−1), ãt−1
i ) for all i ∈ N , then (ωt, at−1) = (ω̃t, ãt−1).26

Let H∅ ⊆ H denote the set of all such histories. A set H ∈ M(H) is negligible if
P t(H ∩Ht|σ) = 0 for every t ∈ N, σ ∈ Σ.

Finally, σ∗ is a subgame perfect equilibrium (SPE) if it induces a Nash equilibrium
in every proper subgame, except possibly for a negligible set. Formally, there exists a
negligible set H ∈ M(H) such that for every i ∈ N , t ∈ N, σ′

i ∈ Σi, and (ωt, at−1) ∈
(H∅ ∩Ht) \H,

Ui(σ
∗|ωt, at−1) ≥ Ui(σ

′
i, σ

∗
−i|ωt, at−1).

Proposition 2. If σ∗ is a trembling hand perfect equilibrium, then it is a subgame
perfect equilibrium and, a fortiori, a Nash equilibrium.

The following example demonstrates that the game introduced by Harris et al.
(1995) and described in Example 2.1, which lacks a subgame perfect equilibrium,
violates SAC(b), highlighting the importance of this condition in our equilibrium
existence result.

Example 2.2 (Harris et al. (1995), continued). Consider any sequence of player
A’s actions (an)n∈N in A where an ̸= 0 for all n ∈ N and an → a0 := 0. Notice that
players C and D’s signals at the beginning of period t = 2 consist of players A and
B’s actions. For every i ∈ {C,D}, n ∈ N, and b ∈ {L,R}:
- γi(an, b) = (an, b);

- µ2
s({s2i,2 = (0, b)}|(an, b)) = 0.

26This definition adapts Myerson and Reny’s (2020) subgame notion to our setting.
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Therefore,

lim
n→∞

µ2
s({s2i,2 = (0, b)}|(an, b)) = 0 ̸= 1 = µ2

s({s2i,2 = (0, b)}|(a0, b)).

This set-wise discontinuity in the signal transition implies a violation of SAC(b). ◀

3.3 Noisy Informational Asymmetries

Sequential absolute continuity and noisy informational asymmetries are closely inter-
twined. We show that, even in games which lack conditions for existence, adding small
amounts of idiosyncratic noise to players’ private signals can ensure SAC, provided
this noise satisfies certain absolute continuity conditions. Specifically, SAC(a) holds
when players cannot perfectly infer the original signals from their noisy observations.
SAC(b) is satisfied under weaker continuity requirements on the original signal tran-
sitions, given additional regularity conditions. Both SAC(a) and SAC(b) conditions
are often met when signals are real-valued and the noise is additive and absolutely
continuous with respect to the Lebesgue measure. For example, additive i.i.d. noise
following uniform or normal distributions typically satisfies the requirements for both
SAC(a) and SAC(b).

Introducing noise to players’ observations mitigates discontinuities arising from
perfect information about other players’ signals or actions. In cases of strategic en-
tanglement, as illustrated in Example 1, noisy observations prevent players from finely
tuning their strategies based on their opponents’ private signals. This noise effectively
smooths out the joint distribution of signals, rendering it absolutely continuous with
respect to the product of players’ marginal distributions. Similarly, in games like
Example 2.1, adding noise to the observation of previous actions allows the signal
distribution to vary more smoothly with players’ moves. This prevents the abrupt
changes that occur when actions are perfectly observable.

We say that a dynamic game has decomposable noisy signals if, for every i ∈ N

and t ∈ N, each player i’s period-t private signal can be represented as

si,t = mi(ŝi,t, ϵi,t),

where ŝi,t ∈ Ŝi denotes a fundamental signal component and ϵi,t ∈ Ei represents a
noisy random variable. The spaces Ŝi and Ei are Polish spaces endowed with their
Borel σ-algebras.27

27We use the notation: ϵt = (ϵ1,t, . . . , ϵn,t), ŝt = (ŝ1,t, . . . , ŝn,t), m(ŝt, ϵt) =
(m1(ŝ1,t, ϵ1,t), . . . ,mn(ŝn,t, ϵn,t)), mt(ŝt, ϵt) = (m(ŝt1, ϵ

t
1), . . . ,m(ŝtt, ϵ

t
t)), ϵt = (ϵ1, . . . , ϵt), and ŝt =

(ŝ1, . . . , ŝt).
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For every t ∈ N, denote by µtŝ,ϵ(·|at−1) and µtϵ(·|at−1) the distribution of (ŝt, ϵt)
and ϵt conditional on at−1 ∈ X t−1, respectively. Let µtϵi(·|at−1) be each marginal of
µtϵ(·|at−1) for i ∈ N .

Assumption (Noisy observability). The following conditions hold:

(a) For every t ∈ N and at−1 ∈ X t−1, µtŝ,ϵ(·|at−1) is absolutely continuous with respect
to µtŝ(·|at−1)×∏i∈N µ

t
ϵi
(·|at−1);

(b) If µts(S̃|at−1) > 0 for S̃ ∈ M(St), then

Ŝ(S̃) :=
{
ŝ ∈ Ŝt | ∃ϵ ∈ Et, (ŝ, ϵ) ∈ (mt)−1(S̃)

}
satisfies (

∏
i∈N µ

t
ŝi
(·|at−1))(Ŝ(S̃)) > 0.

Noisy observability imposes two requirements: (a) The joint measure of the fun-
damental signal component ŝt and the noise term ϵt is absolutely continuous with
respect to the product of the measure of the fundamental signal component and the
product of the marginal measures over each player’s noise. This holds for every period
t ∈ N and history of actions at−1 ∈ X t−1; (b) If a set of histories of signal profiles S̃
has positive measure, then its projection onto the space of histories of fundamental
signals, denoted by Ŝ(S̃), has positive measure according to the product measure of
the marginal distributions of each player’s fundamental signal component.

The following lemma provides a sufficient condition for noisy observability (b).

Lemma 1. If noisy observability (a) holds and, for every i ∈ N , t ∈ N, sti ∈ Sti ,
µtŝi({ŝti ∈ Ŝti |∃ϵti ∈ Eti, m

t
i(ŝ

t
i, ϵ

t
i) = sti}) > 0, then noisy observability (b) holds.

Notably, when signals are real-valued vectors and noise is additive, i.e., Si ⊆ Rℓi

and mi(ŝi, ϵi) = ŝi + ϵi for i ∈ N , ℓi ∈ N, noisy observability holds under certain
conditions. For instance, it is satisfied if ϵt is i.i.d. and

dµtϵ(ϵ1,t, . . . , ϵn,t|at−1) = f tϵ (ϵ1,t, ϵ2,t, . . . , ϵn,t, a
t−1) · dλℓ1(ϵ1,t)× . . .× dλℓn(ϵn,t), (5)

where: λℓi is the Lebesgue measure over Rℓi ; f tϵ (ϵ, at−1) > 0 implies f tϵ (ϵ̂, at−1) > 0

for every ϵ̂ in a neighborhood of ϵ and every at−1 ∈ X t−1; every ŝt ∈ Ŝt has a
neighborhood with positive measure.

The next result shows that “adding some noise” to the players’ observations, sat-
isfying noisy observability, yields SAC(a).
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Proposition 3. Noisy observability implies SAC(a) in any game with decompos-
able noisy signals.

Next, we investigate which noise structure implies SAC(b) by characterizing a
class of signal profile distributions that are bounded and continuous in the strong
total variation norm. For every t ∈ N, let µtŝ,s(·|at−1) be the distribution of (ŝt, st)
conditional on at−1 ∈ X t−1.

Assumption (Sequentially continuous noise). The following holds:

(a) For every t ∈ N, at−1 ∈ X t−1, µtŝ(·|at−1) is continuous in at−1 with respect to the
topology of weak convergence of probability measures.

(b) For every t ∈ N, at−1 ∈ X t−1, dµtŝ,s(st, ŝt|at−1) = f(st, ŝt, at−1)dµtŝ(ŝ
t|at−1)dµ̃t(st)

where µ̃t ∈ ∆(St) and f is a bounded density such that, for a µ̃-full-measure set
Š ⊂ St, f(st, ·, ·) is continuous for every st ∈ Š.

Sequentially continuous noise imposes two conditions: (a) The measure of the
fundamental signal component µtŝ(·|at−1) must be continuous in the history of action
profiles at−1 with respect to the topology of weak convergence of probability mea-
sures. Notice that this is a weaker continuity requirement compared to SAC(b). In
particular, it holds whenever ŝt is a deterministic and continuous function of at−1, as
in Example 2.1; (b) The joint measure of the signal and fundamental signal µtŝ,s(·|at−1)

must be absolutely continuous with respect to the product of the fundamental sig-
nal measure µtŝ(·|at−1) and a probability measure over the space of signals µ̃t(·) that
does not depend on the history of actions. Furthermore, the corresponding density
function f(st, ŝt, at−1) must be bounded and almost surely continuous in ŝt and at−1.

Proposition 4. Sequentially continuous noise implies SAC(b) in any game with
decomposable noisy signals.

For real-valued vector signals with additive noise that is absolutely continuous with
respect to the Lebesgue measure, we derive a simpler condition implying sequentially
continuous noise (b). This condition is satisfied even by arbitrarily small independent
noise added to the fundamental signal.

Lemma 2. If the following conditions hold then sequentially continuous noise (b) is
satisfied:

1. Noisy observability (a) holds; Si ⊆ Rℓi, and mi(ŝi, ϵi) = ŝi+ ϵi for i ∈ N , ℓi ∈ N.
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2. For every t ∈ N, at−1 ∈ X t−1, µtϵ(·|at−1) is absolutely continuous with respect to
the Lebesgue measure λt. The density f t : Et× Ŝt×X t−1 → R with respect to the
product of µtŝ(·|at−1) and λt is bounded and there is a full measure set Št ∈ M(St)

s.t., for st ∈ Št, f̃(st, ŝt, at−1) := f t(st − ŝt, ŝt, at−1) is continuous in ŝt and at−1.

Thus, by Proposition 4 and Lemma 2, if the density function f tϵ in equation (5)
is additionally almost surely continuous in ϵ, then sequentially continuous noise (b)

holds.
Lemmas 1 and 2 enable us to apply Propositions 3 and 4 to the class of games

introduced in Application 1, thereby establishing equilibrium existence.

Corollary 1. Let Γ be a dynamic game with Lebesgue signals as in Application
1. Then, Γ satisfies sequential absolute continuity.

Example 2.1 features countable signals, ensuring SAC(a) holds. Proposition 4
then implies that adding independent, uniformly distributed noise to the observation
of player A’s actions yields equilibrium existence. This result follows from funda-
mental signals being deterministic and continuous functions of past actions, and thus
satisfying continuity in the weak convergence of probability measures. We apply this
result to Example 2.1 by characterizing an SPE.

Example 2.3 (Harris et al. (1995), continued). Assume that, instead of perfectly
observing (a, b), each player i ∈ {C,D} observes si = (a + ui, b + ũi) where ui, ũi ∼
U[−δ, δ], for δ ∈ A, are independent, uniformly distributed private signals. Notably,
the noise range δ can be arbitrarily close to zero.

The following strategy is an SPE. Player A randomizes uniformly between the
actions δ and −δ. The other players’ best responses to A’s strategy are as follows: each
player i ∈ {C,D} plays L if a+ ui < 0 and R otherwise, while B sets β = 1/2.28 ◀

Harris et al. (1995) restores existence in this example, and more generally in games
with almost perfect information, by introducing a public correlation device at the
start of the second period. Our Corollary 1 demonstrates an alternative approach:
existence can be ensured by incorporating idiosyncratic noise into players’ private
signals, a result that extends to a wider class of dynamic games with informational
asymmetries.

28In Supplemental Appendix B.7 we show that this strategy profile is an SPE.
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4 Markov Games
We now introduce Markov games with informational asymmetries. In this environ-
ment, the set of the states of the world can be written as Ω = ΩR×Ω ̸R, which represent
the payoff-relevant and payoff-irrelevant states, respectively. For every i ∈ N , play-
ers’ payoffs and state transition depend only on the current payoff-relevant state and
action profile, gi : ΩR × X → R and µ : ΩR × X → ∆(Ω). Additionally, in the
discounted payoffs case we can allow gi to depend on the period without including it
as part of the payoff-relevant states, i.e., gi(t, ωRt , at) = δt ·ui(ωRt , at), δ ∈ (0, 1). Each
player receives information about the current payoff-relevant and irrelevant state,
which we term payoff-relevant and irrelevant private signals, respectively. That is,
Si = SRi × S ̸R

i and γi = (γRi , γ
̸R

i ) such that γRi : ΩR → SRi and γ ̸R
i : ∪t∈NHt → S ̸R

i . In
particular, the payoff irrelevant signal may contain information about the past that is
no longer payoff relevant. The available actions depend on the current payoff-relevant
signals, Ai : SRi → Xi.

For ease of exposition, we assume that regular conditional measures exist.29 In
particular, for every σ ∈ Σ, t ∈ N, let µRω,t(·|·, σ) : ∪i∈NHi → ∆(ΩR) be the transition
probability from private history hi ∈ Hi, i ∈ N , to period-t payoff-relevant states
ωt ∈ ΩR conditional on strategy σ.30

For every i ∈ N , player i’s strategy σi ∈ Σi is stationary Markov if it conditions
only on the current payoff-relevant private signal. Formally, σi(·|hi) = σi(·|sRi (hi)),
for each hi ∈ HAi

, where the measurable function sRi (hi) projects each private history
hi onto the current payoff-relevant signal in SRi . Denote by ΣM

i ⊂ Σi and ΣM the set
of player i’s stationary Markov strategies and strategy profiles, respectively.

We require Markov games to satisfy two additional conditions:
(i) Markov information. For every i ∈ N , t ∈ N, σM ∈ ΣM , µRω,t(·|hi, σM) =

µRω,t(·|h̃i, σM) for each hi, h̃i ∈ Hi such that sRi (hi) = sRi (h̃i);

(ii) Markov payoff. For every i ∈ N , t ∈ N, st, s̃t ∈ St and at ∈ X t, ĝi,t(st, at) =

ĝi,t(s̃
t, at) if st = ((sR,tℓ )ℓ≤t, (s

̸R,t
ℓ )ℓ≤t), s̃t = ((sR,tℓ )ℓ≤t, (s̃

̸R,t
ℓ )ℓ≤t).

Markov information requires that if all players follow stationary Markov strategies,
then each player’s beliefs about the current payoff-relevant state, conditional on her

29A sufficient condition for the existence of regular conditional measures is to assume that Ω and
S are Souslin spaces. A subset of a Hausdorff space is Souslin if it is a continuous image of a Polish
space, i.e., a complete, separable metric space. See Corollary 10.4.6 in Bogachev (2007).

30See Supplemental Appendix B.4 for a formal definition.
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private history, depend only on the current payoff-relevant signal. This assumption
implies that the additional information contained in the private history is payoff
irrelevant for future decisions, and it formalizes the notion that bygones are bygones in
an environment with informational asymmetries. Markov payoff complements Markov
information by stating that payoff-relevant signal profiles determine payoffs, justifying
why stationary Markov strategies condition only on them.

Markov information and Markov payoff conditions are satisfied in various games
of interest. In standard stochastic games, these conditions hold naturally: the current
state of the world, observed by all players, serves as the payoff-relevant signal, and
flow payoffs depend solely on this signal and the current action profile. Notably, these
conditions can also be met in certain games with asymmetric information. Examples
include stochastic games with public and private shocks (Balbus et al., 2013), dynamic
cheap talk games (Renault et al., 2013), and asynchronous games, such as revision
games with or without observation of previous moves (Kamada and Kandori, 2020).
We discuss these Markov games in detail in Applications 2 and 3.

We now define Markov absolute continuity (MAC), which replaces SAC in Markov
games. For every t ∈ N, set SR,t := (SR)t, and let γR,t : Ωt → SR,t be the projection of
γt onto SR,t. For every at−1 ∈ X t−1, this projection, in conjunction with µtω(·|at−1),
induces a measure, µR,ts (C|at−1) := µtω({ωt ∈ Ωt : γR,t(ωt) ∈ C}|at−1), for C ∈
M(SR,t), over payoff-relevant signal profile histories. Let µMsi,t(·|at−1) be the marginal
of µR,ts on player i’s period-t payoff-relevant signals in SRi .

Assumption (Markov absolute continuity). The following holds:

(a) For every t ∈ N, at−1 ∈ X t−1, µR,ts (·|at−1) is absolutely continuous with respect
to the product measure

∏
i∈N
∏

ℓ≤t µ
M
si,ℓ

(·|at,(ℓ−1));

(b) For every t ∈ N, µR,ts is bounded, and continuous in X t−1 in the strong total
variation norm.

MAC neither weakens nor strengthens SAC, but rather modifies it in two ways.
First, it applies exclusively to payoff-relevant signal profiles. Second, MAC requires
that absolute continuity holds with respect to the product of marginal measures over
payoff-relevant private signals, taken not only across players but also across periods.

The following definition adapts stationary Markov perfect equilibria (MPE) to
games with informational asymmetries.
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Definition 4. A stationary Markov strategy profile σM ∈ ΣM is a stationary
Markov perfect equilibrium if it is a trembling hand perfect equilibrium.

In standard stochastic games, where players observe the history of the game before
moving, an MPE is defined as a strategy profile that maximizes continuation payoffs
for each player. However, in settings featuring informational asymmetries, defining
continuation payoffs requires specifying beliefs over possible histories that are not
fully observed. To circumvent this issue, we define an MPE as a THPE in Markov
strategies. In light of Propositions 1 and 2, our notion exhibits desirable sequential
rationality properties and coincides with the usual one in standard stochastic games.31

Theorem 3. Let Γ be a Markov game that satisfies Markov absolute continuity.
Then, Γ has a stationary Markov perfect equilibrium.

The proof of Theorem 3 builds upon the ideas used in the proof of Theorem 2,
with two main novelties. First, the MAC condition ensures absolute continuity across
periods, which prevents strategic entanglement across periods and allows strategies
to retain their Markov properties in the limit. Second, we need to show that in a
Markov environment, when players employ Markov strategies, their opponents have
best responses within the class of Markov strategies. The latter is guaranteed by the
Markov information and payoff conditions.

Games in the following class are Markov and satisfy MAC.

Application 2 (Stochastic games with public and private shocks). This class
of games enriches standard stochastic games by incorporating independent, payoff-
relevant private shocks into the state space. Such a framework is well-suited to model
dynamic oligopolies, where firms set prices and the current public and private shocks
represent demand and firm-specific cost characteristics, respectively.

Formally, let ΩR = Ω̂ ×∏i∈N Θi and Ω ̸R = X, where: Ω̂ is a set of countable,
commonly observed, payoff-relevant states, interpreted as public shocks; each Θi rep-
resents a, potentially uncountable, set of private shocks which are only observed by
player i; X contains the previous period’s action profile which is also commonly
observed. Payoff-relevant private shocks display the following conditionally indepen-
dent structure, µ((ω̂′, θ′)|(ω̂, θ), a) = f(ω̂′, ω̂, a) ·∏i∈N µi(θ

′
i|ω̂′) for every a ∈ X, and

31Constrained equilibria in Markov strategies converge to MPE in the weak topology “period by
period”. This convergence implies the convergence for THPE. See Supplemental Appendix B.4 for
details.
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(ω̂, θ), (ω̂′, θ′) ∈ Ω, where µi : Ω̂ → ∆(Θi) is a transition probability, and f is inter-
preted as a density function.

For every i ∈ N , MAC(a) holds since Ω̂ is countable and each Θi is conditionally
independent; MAC(b) holds, by Proposition 5, if f is uniformly bounded and con-
tinuous for every (ω̂′, ω̂, θ). Furthermore, Markov information and Markov payoff are
satisfied (see Supplemental Appendix B.8). Therefore, by Theorem 3, there exists a
stationary Markov perfect equilibrium where each player’s strategy depends only on
the current public and private shocks.

An equilibrium exists even though players observe the history of action profiles,
which may appear at odds with the non-existence Example 2.1. Existence holds since
MAC restricts only the transition of payoff-relevant signal profiles, i.e., of public and
private shocks. ◀

5 Relaxing Discounted Payoffs
As discussed in Section 3, our payoff boundedness condition not only accommodates
but also generalizes the discounted payoffs assumption commonly employed by the
literature. This greater generality is substantive: we show that our payoff bounded-
ness holds for a class of non-discounted games, which we call games with stochastic
move opportunities, where players receive opportunities to move at random times.

Consider the following class of non-discounted games where players draw opportu-
nities to move at random periods. Opportunities to move are drawn from an interval
[0, T ), with T ∈ R+ ∪ {∞}, and states of the world takes the form Ω = [0, T ) × Ω̂,
where Ω̂ is a set of underlying states that contains an absorbing state ω̂end, such that
for any t ∈ [0, T ), the game ends if (t, ω̂end) is reached.

For every ℓ ∈ N, period ℓ represents the ℓ’th opportunity to move for any player,
and tℓ is the corresponding timing. For ωℓ = (tℓ, ω̂ℓ) and ωℓ′ = (tℓ′ , ω̂ℓ′), the state
transition probability is such that, with probability one, tℓ < tℓ′ whenever ℓ < ℓ′,
ensuring that later timings are assigned to later opportunities. Furthermore, for
ωt ∈ Ωt, if ωtτ = (·, ω̂end) for some τ < t then gi(ωt, ·) = 0 for all i ∈ N . That is, after
visiting the state ω̂end for the first time, players do not incur flow payoffs.

Denote by Hend, t := {(ωt, at) ∈ Ωt × X t|ωtt = (·, ω̂end), ωtℓ ̸= (·, ω̂end), ℓ < t} the
subset of Ωt ×X t in which the game ends in period t. The following lemma provides
a condition which implies payoff boundedness.
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Lemma 3. If
∑

t∈N t · supσ∈Σ P t(Hend, t|σ) < ∞ and
∑

t∈N P t(Hend, t|σ) = 1, for
every σ ∈ Σ, then payoff boundedness holds.

In games with stochastic move opportunities, Lemma 3 states that payoff bound-
edness holds whenever (i) the sequence in which the t-th element is t times an upper
bound on the period-t probability that the game ends is summable, and (ii) the game
ends in finite time with probability 1.

A consequence of this result is that, when actions do not affect the length of the
game, i.e., P t(Hend, t|σ) is independent of σ, payoff boundedness is satisfied as long as
the expected number of opportunities to move is finite, and (ii) holds. Notably, these
conditions hold in revision games (Kamada and Kandori, 2020), where opportunities
to move are drawn at exogenous Poisson rates independently of the previous play.32

6 Imperfect Observation of Moving Periods
Theorems 1, 2, and 3, and Propositions 1 and 2 hold in a broader class of games that
allows players to be inactive in certain periods. During these inactive periods, players
neither make moves nor record information in their private histories. Due to the
additional complexity this generalization entails, we present the complete details in
Supplemental Appendix B.1. This section outlines the main elements of this extension
and illustrates an application to Markov games.

Whenever active, a player receives informative signals about the history of states
and action profiles before moving; when inactive, a player neither observes signals nor
takes non-trivial actions. Private histories exclude information from inactive periods,
implying players may be oblivious to the number of moves that have occurred. We
assume that at least one player is active in each period, and without loss, that players
receive non-zero flow payoffs only when active.

Allowing for active and inactive players extends our analysis to settings where
players may not be informed whether moves have taken place in the past, thus in-
troducing uncertainty about the multi-stage structure of the game. Such games have
been studied in various contexts: Kreps and Ramey (1987) provide an early example
where players lack a sense of calendar time; Matsui (1989) considers an espionage

32Revision games can be represented as follows. Move opportunities arrive prior to an exogenous
deadline, T < ∞, at a constant Poisson rate. The underlying state space Ω̂ contains two elements
{ω0, ω̂end}. The game starts in state ω0 and switches to ω̂end as soon as a time larger than the
deadline is drawn. There is a finite constant set of available actions, and the players’ payoffs realize
once the game ends.
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game with private revision opportunities; Kamada and Moroni (2018) examine out-
comes in coordination games with private timing; Doval and Ely (2020) investigate the
range of equilibrium outcomes that can arise across different information structures
and extensive forms for a given base game.

We apply the inactive player framework to the class of Markov games to show the
existence of stationary Markov perfect equilibria. See Supplemental Appendix B.8
for a formal description.

Application 3 (Asynchronous games). Assume that only one player is active at
each period, who perfectly observes the current payoff-relevant state and, possibly im-
perfectly, the payoff-irrelevant one. This ensures that the Markov information condi-
tion holds. By Proposition 5, MAC holds if dµ(ωRt |ωRt−1, at−1) = f(ωRt , ω

R
t−1, at−1)dν(ω

R
t )

for some bounded density f that is continuous in at−1 for each (ωRt , ω
R
t−1) and some

measure ν ∈ ∆(ΩR).
Asynchronous revision games with finite actions, where moving opportunities are

drawn at Poisson rates (Kamada and Kandori, 2020), fall within this application. No-
tice that MAC still holds if we ascribe previous moving times to the payoff-irrelevant
states, even though these timings belong to an uncountable set. Thus, Theorem 3
guarantees existence of a stationary MPE, even when Theorem 2 may not apply due
to the possible violation of SAC.

Furthermore, Theorem 3 implies the existence of a stationary MPE in a class of
dynamic cheap talk games (Renault et al., 2013). These games model communication
between an informed sender and a receiver controlling state transitions.33 Assuming
finite message and action spaces ensures that payoff boundedness, continuity, and
MAC hold, while allowing for an uncountable set of exogenous states observed only by
the sender. Theorem 3 guarantees an equilibrium where the sender’s strategy depends
on the receiver’s previous action and the current exogenous state, while the receiver’s
strategy depends on her previous action and the current sender’s message. ◀

A Appendix
The following lemma shows that each player’s expected payoff can be written in a
simple way as a function of p(·|·, σ).

33To satisfy the Markov information condition, the state transition must be either independent
or controlled solely by the receiver’s action, without dependence on the current state.
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Lemma 4. The function p(·|·, σ) is measurable, the set Σ is non-empty, and, for
each i ∈ N , player i’s expected payoff when players follow strategy σ ∈ Σ is given by

Ui(σ) =
∑
t∈N

Ui,t(σ), (6)

where Ui,t(σ) :=
∑
at∈Xt

∫
Ωt

gi(ω
t, at) · p(at|ωt, σ) dµtω(ωt|at,(t−1)).

Proof. Define the correspondence Ãi : Hi ⇒ ∆(Xi) as Ãi(hi) := ∆(Ai(hi)), where
∆(Xi) is endowed with the weak topology of probability measures. For each hi ∈ Hi,
Ãi(hi) is the set of probability measures with support in Ai(hi). By Himmelberg
and Van Vleck (1975), Ãi(hi) is weakly measurable. By Theorems 15.19 and 18.13
in Aliprantis and Border (2006), Ãi admits a measurable selector. This shows that
the set of strategies is non-empty. By Fubini- Tonelli theorem,34 since gi is bounded,
we can exchange the order of integration of the counting measure over actions and
the measure over states repeatedly to obtain that player i’s period-t expected payoff,
given σ, is Ui,t(σ).

Following Lemma 4, for t ∈ N, we rewrite player i’s period-t continuation ex-
pected payoff from σ ∈ Σ after history (ωτ , aτ−1) ∈ Hτ , τ ≤ t, as Ui,t(σ|ωτ , aτ−1) =∑
at∈Xt

∫
Ωt

gi(ω
t, at) · p(at|ωt, aτ−1, σ) dµtω(ω

t|ωτ , at,(t−1)).

Next, we provide a simplified proof of Theorem 1; see Supplemental Appendix B.3
for a complete proof.

Proof of Theorem 1. Assume that the game has a finite length T , X is infinite,
and Ai(hi) = Xi for each hi ∈ Hi, i ∈ N .

Let ε̃ ∈ E. We start by defining the relevant topology on the set of ε̃-constrained
strategy profiles. For every i ∈ N , t ≤ T , we can construct what we call a refer-
ence measure νti ∈ ∆(Sti ) such that, for each at−1 ∈ X t−1, µtsi(·|at−1) is absolutely
continuous with respect to νti .35 Define Ii,φt

i
: Σi → R as

Ii,φt
i
(σi) :=

∫
St
i

∑
ati∈Xt

i

φti(s
t
i, a

t
i) · pi

(
ati|sti, σi

)
dνti (s

t
i).

34Theorems 11.27 and 11.28 in Aliprantis and Border (2006).
35Footnote 25 exemplifies the construction of one such reference measure.
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The weak topology on Σi(ε̃) is the coarsest topology such that Ii,φt
i

is continuous for
every φti ∈ CI(Sti × X t

i , ν
t
i ), the set of Carathéodory integrands on (Sti × X t

i , ν
t
i ).36

The weak topology on Σ(ε̃) = ×i∈NΣi(ε̃) is the product topology, where each Σi(ε̃) is
endowed with its weak topology.

Consider the set of induced transition probabilities Pi(ε̃) := {pi(·|·, σi)|σi ∈ Σi(ε̃)}
and endow it with the weak topology defined in the same manner as above. Similarly,
let the weak topology on P(ε̃) := ×i∈NPi(ε̃) be the product topology.37 For every
i ∈ N , the resulting topological spaces Σ(ε̃) and P(ε̃) are homeormorphic. This
holds since, for every p̃i(·|·) ∈ Pi(ε̃), there is a strategy, defined recursively as

σi
(
ati,t|sti, at,(t−1)

i

)
=

p̃i(a
t
i|sti)

p̃i(a
t,(t−1)
i |st,(t−1)

i )
, (7)

for t ∈ N, (sti, a
t,(t−1)
i ) ∈ Hi, where p̃i(a

t,(0)
i |st,(0)i ) := 1, such that pi(·|·, σi) = p̃i(·|·).

For every (pi)i∈N ∈ P(ε̃), where pi = pi(·|·, σi) for some σi ∈ Σi(ε̃), i ∈ N , let
Ũi((pi)i∈N) := Ui((σi)i∈N) be player i’s expected payoff when players follow strategy
(σi)i∈N . Player i’s ε̃-constrained best response correspondence ri : P−i(ε̃) ⇒ Pi(ε̃) is

ri(p−i) ∈ argmax{Ũi(p̃i, p−i)|p̃i ∈ Pi(ε̃)},

and let r : P(ε̃) ⇒ P(ε̃) be the Cartesian product of the ri for each i ∈ N .
Relying on the homeomorphism introduced, every fixed point of r is mapped to a

strategy profile that, by definition, forms an ε̃-constrained equilibrium. By applying
the Kakutani-Fan-Glicksberg fixed point theorem, we establish that such a fixed point
exists. In particular, we show that: (1) P(ε̃) is compact, and (2) convex; (3) r
has closed graph, (4) is non-empty, and (5) convex valued.38 As the arguments
establishing points (2) and (5) are standard, we omit them from the proof.

(1) P(ε̃) is compact. By Theorem 2.3 in Balder (1988), for each t ≤ T the set
{pti(·|·, σi)|σi ∈ Σi(ε̃)} is relatively compact,39 implying P(ε̃) is relatively compact. To

36A measurable function f : Y × Z → R is a Carathéodory integrand on (Y × Z, β), where
β ∈ ∆(Y ) and Z is a compact metric space endowed with its Borel σ-algebra, if: (i) for every y ∈ Y ,
f(y, ·) is continuous in Z; (ii) there exists ψ ∈ L1(Y, β) such that |f(y, ·)| ≤ ψ(y) for every y ∈ Y .
For every ψ ∈ L1(Y, β), ψ is M(Y )-measurable and

∫
Y
|ψ|dβ < +∞.

37We view pi(·|·, σi) as a transition probability from ∪t≤TS
t
i to ∪t≤TX

t
i , where for each t ≤ T

and sti ∈ St
i , pi(·|sti, σi) has support in Xt

i .
38As discussed by Balder (1988), the requirement that P(ε̃) is a subset of a locally convex Haus-

dorff space is satisfied by considering equivalent classes of transition probabilities that induce the
same expected payoff. See Supplemental Appendix B.3 for further details.

39A set is relatively compact if its closure is compact.
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see that it is closed, let (σαi )α∈Λ be a net of player i’s strategies, for some directed set
Λ, and suppose that pi(·|·, σαi ) converges weakly to a transition probability represented
by the measurable function p∗i (·|·). Then p∗i (·|·) = pi(·|·, σ∗

i ), for σ∗
i defined recursively

using equation (7). Lemma 6 in Supplemental Appendix B.3 shows that σ∗
i ∈ Σi(ε̃).

Therefore, P(ε̃) is compact.

(3) and (4) r has closed graph and is non-empty. By Radon-Nikodym theorem,
SAC(a) implies the existence of a density function f̃ t : St × X t−1 → R such that
dµts(s

t|at−1) = f̃ t(st, at−1) · dµts1(st1|at−1) × . . . × dµtsn(s
t
n|at−1) for every t ∈ N. For

t ∈ N, st ∈ St, let νt(st) =
∏

i∈N ν
t
i (s

t
i). Applying again Radon-Nikodym, we can

write
dµts(s

t|at−1) = f t(st, at−1) · dνt1(st1)× . . .× dνtn(s
t
n)

where f t : St × X t−1 → R denotes another density function. Thus, by combining
Lemma 4, payoff continuity and SAC(a), we obtain

Ũi(p) =
T∑
t=1

∫
St

∑
at∈Xt

ĝi,t(s
t, at) · f t(st, at,(t−1)) · p(at|st, σ) dνt1(st1)× . . .× dνtn(s

t
n).

Proposition 5 shows that there is a version of f t(st, at,(t−1)) belonging to CI(St, X t−1, νt)

if and only if SAC(b) holds. Thus, by Theorem 2.5 in Balder (1988), Ũi(p) is con-
tinuous in p, since, by payoff continuity, ĝi,t(st, at) · f t(st, at,(t−1)) is a Carathédory
integrand for every t ≤ T . For every i ∈ N , as the transition probability space
P(ε̃) is compact, the continuity of Ũi implies that r has closed graph and that ri is
non-empty. □

We present next the proofs of the results that appear in Section 3.3.

Proof of Proposition 3. Suppose that noisy observability holds. Let µP,ts :=∏
i∈N µ

t
si

be the product measure induced by the players marginals over their private
signals up to period t.

Let S̃ ∈ M(St) such that µts(S̃) > 0, and set B := (mt)−1(S̃). By Lemma 4.46
in Aliprantis and Border (2006), since a Polish space is second countable, there exist
sets B̂ ∈ M(Ŝt) and E(ŝ) ∈ M(Et) for each ŝ ∈ B̂ such that we can write

B = {(ŝ, ϵ)|ŝ ∈ B̂, ϵ ∈ E(ŝ)}.

Therefore, by noisy observability (a) we have

µts(S̃) = µts,ϵ(B) =

∫
B̂

∫
E(ŝt)

f(ŝt, ϵt, at−1) dµtϵ1(ϵ
t
1|at−1) . . . dµtϵn(ϵ

t
n|at−1)dµtŝ(ŝ

t|at−1) > 0,
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for some measurable density f : Ŝt × Et ×X t−1 → R. Hence, there is a measurable
B̂0 ⊂ B̂ such that µtŝ(B̂0) > 0, and, for each ŝ ∈ B̂0,∫

E(ŝt)

f(ŝt, ϵt, at−1) dµtϵ1(ϵ
t
1|at−1) . . . dµtϵn(ϵ

t
n|at−1) > 0.

Furthermore, µts(S̃0) > 0, where S̃0 := {mt(ŝ, ϵ)|ŝ ∈ B̂0, ϵ ∈ E(ŝ)}. At the same time,
we have

µPs (S̃0) =

∫
B̂0

∫
E(ŝt)

f(ŝt, ϵt, at−1) dµtϵ1(ϵ
t
1|at−1) . . . dµtϵn(ϵ

t
n|at−1)dµtŝ1(ŝ

t
1|at−1) . . . dµtŝn(ŝ

t
n|at−1) > 0,

since by noisy observability (b), µP,tŝ (B̂0) > 0.

Proof of Proposition 4 and Lemma 2. For every t ∈ N, B ∈ M(St), at−1 ∈
X t−1,

µts(B|at−1) =

∫
B

∫
Ŝt

f t(st, ŝt, at−1) dµtŝ(ŝ
t|at−1)dµ̃t(st)

By sequentially continuous noise,
∫
Ŝt f

t(st−ŝt, ŝt, at−1) dµtŝ(ŝ
t|at−1) ∈ CI(St×X t−1, λt).

By Proposition 5, µts is bounded and continuous in the strong total variation norm.
Similarly, to show Lemma 2, notice that for B̂ ∈ M(Ŝt) we can write

µts(B × B̂|at−1) =

∫
B̂

∫
B−ŝt

f t(ϵt, ŝt, at−1) dλt(ϵt)dµtŝ(ŝ
t|at−1)

=

∫
B̂

∫
B
f t(st − ŝt, ŝt, at−1) dλt(st)dµtŝ(ŝ

t|at−1)

=

∫
B

∫
B̂
f t(st − ŝt, ŝt, at−1) dµtŝ(ŝ

t|at−1)dλt(st),

where the first equality holds by absolute continuity, the second equality holds by
translation invariance of the Lebesgue measure λt, and the third by Fubini-Tonelli.

We conclude by showing a measure theoretical result of independent interest which
equates the continuity and boundedness of measures in the strong total variation
norm to Carathéodory integrand densities. Let (Y,M(Y ), β) be a measure space,
Z a countable metric space endowed with the σ-algebra of all subsets of Z and the
counting measure, M(Y )0 a sub σ-algebra of M(Y ), µ(·|·) : Z → M(Y ) a transition
probability from Z to Y , and π(Y ) the set of finite measurable partitions of Y .
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Proposition 5. Suppose that there is a measure β̂ over Y and a function φ̂ :

Y ×Z → R+, that is M(Y )0⊗M(Z) measurable and such that for every B ∈ M(Y )0

and z ∈ Z

µ(B|z) =
∫
B

φ̂(y, z) dβ̂(y).

Then:

1. There is a set Ŷ with β̂(Y \Ŷ ) = 0 such that φ̂(y, ·) is continuous for every y ∈ Ŷ

if and only if µ is continuous in Z in the strong total variation norm;

2. Suppose φ̂(·, y) is continuous for every y ∈ Y . Then there is a function ψ ∈
L1(Y, β̂) such that φ̂(y, z) ≤ ψ(y) for every y ∈ Y if and only if µ is bounded in
the strong total variation norm.

Proof. Part 1. Necessity. We argue by contradiction. Suppose there is a B ∈ M(Y )0

with β̂(B) ∈ (0,∞), such that for each y ∈ B, there is z∗(y) ∈ Z, ε(y) > 0 and a
sequence (zn(y))n∈N such that d

(
zn(y), z∗(y)

)
< 1

n
and |φ̂(y, zn(y)) − φ̂(y, z∗(y))| >

ε(y). Define the correspondence ξ : B ⇒ Z

ξ(y) =
{
z ∈ Z

∣∣∃ε ∈ (0, 1), ∀n ∈ N, ∃zn ∈ Z, d(zn, z) < 1/n, |φ̂(y, zn)− φ̂(y, z)| > ε
}
.

Since z∗(y) ∈ ξ(y) for each y ∈ B, ξ is non-empty valued. Furthermore, let z ∈ Z

and let {εj}j∈N be a countable dense subset of (0, 1). We have

{y ∈ B|z ∈ ξ(y)}
=
{
y ∈ B

∣∣∃ε ∈ (0, 1), ∀n ∈ N, ∃zn ∈ Z, d(zn, z) < 1/n, |φ̂(y, zn)− φ̂(y, z)| > ε
}

=
{
y ∈ B

∣∣∃j ∈ N, ∀n ∈ N, ∃zn ∈ Z, d(zn, z) < 1/n, |φ̂(y, zn)− φ̂(y, z)| > εj
}

=
⋃
j∈N

⋂
n∈N

⋃
zn∈Z

{
y ∈ B

∣∣ d(zn, z) < 1/n, |φ̂(y, zn)− φ̂(y, z)| > εj
}
,

where the second equality follows from {εj}j∈N dense in (0, 1). Since φ̂ is M(Y )0 ⊗
M(Z) measurable, each set {y ∈ B

∣∣ d(z, z∗) < 1/n, |φ̂(y, z) − φ̂(y, z∗)| > εj} is in
M(Y )0. Therefore, {y ∈ B|z ∈ ξ(y)} is M(Y )0-measurable and, by Lemma 15, ξ has
a M(Y )0-measurable selection ẑ∗(y). Define the correspondence

ξε(y) =
{
ε ∈ {εj}j∈N

∣∣∀n ∈ N,∃zn ∈ Z, d(zn, ẑ
∗(y)) < 1/n, |φ̂(y, zn)− φ̂(y, ẑ∗(y))| > ε

}
.

Since ẑ∗(y) ∈ ξ(y) for each y ∈ B, ξε is non-empty valued. As before, By Lemma
15, ξε has a M(Y )0-measurable selection, ε̂(y). Analogously, define the correspon-
dence

ξn(y) =
{
z ∈ Z

∣∣d(z, z∗(y)) < 1/n, |φ̂(y, z)− φ̂(y, z∗(y))| > ε̂(y)
}
.
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Since ẑ∗(y) ∈ ξ(y) and ε̂(y) ∈ ξε(y), ξn is non-empty valued. As before, ξn(y) has a
M(Y )0-measurable selection, ẑn(y).

Now, for each z ∈ Z, define the set Bz := {y ∈ B|ẑ∗(y) = z}. Since ∪z∈ZBz = B

and β̂(B) > 0 then there is ẑ such that β̂(Bẑ) > 0. Define B̂n,+
z := {y ∈ Bẑ|ẑn(y) =

z, φ̂(y, z)− φ̂(y, ẑ) > 0}, and B̂n,−
z := {y ∈ Bẑ|ẑn(y) = z, φ̂(y, z)− φ̂(y, ẑ) < 0}. Let

ε̌ :=
∫
Bẑ
ε̂(y) dβ̂(y). By construction ε̌ > 0.

We have, for every n ∈ N, there is a finite subset of Z, denoted Zn, such that

∥∥∥(µ− µẑ)|B(ẑ,1/n)

∥∥∥
SV

≥
∑
z∈Zn

(∫
B̂n,+

z

(
φ̂(y, z)− φ̂(y, ẑ)

)
dβ̂(y)+

∫
B̂n,−

z

(φ̂(y, ẑ)−φ̂(y, z)) dβ̂(y)
)

≥
∫
Bẑ

∣∣φ̂(y, ẑn(y))− φ̂(y, ẑ)
∣∣ dβ̂(y)− ε̌/2 ≥

∫
Bẑ

ε̂(y) dβ̂(y)− ε̌/2 = ε̌/2.

However, since µ is continuous in z in the strong total variation norm,
∥∥(µ− µẑ)|B(ẑ,1/n)

∥∥
SV

ought to converge to zero as n→ ∞. This is a contradiction.
Sufficiency. For each n ∈ N, ˆ̂εn(y) := supz∈B(z∗,1/n) |φ(y, z)− φ(y, z∗)| is a measur-
able function and converges to zero almost surely in y. The conclusion follows by the
dominated convergence theorem as

∥∥(µ− µz
∗
)|B(z∗,1/n)

∥∥
SV

≤
∫
Y
ˆ̂εn(y) dβ(y).

Part 2. Notice that φ̄(y) := supz∈Z φ(z, y) is measurable and belongs to L1(Y, β) if
and only if ∥µ∥SV is finite.
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B Supplemental Appendix — Omitted Proofs

B.1 Incorporating Active and Inactive Players

In the remainder of the paper, we enrich the class of games we consider by allowing for
active and inactive players. In particular, the function Ti : ∪t∈NΩt ×X t−1 → {0, 1}
is measurable and determines if player i ∈ N is active or inactive in period t ∈ N,
Ti(·) = 1 and Ti(·) = 0, respectively, as a function of the history of the states of the
world and action profiles. We assume that at least one player is active at each period.

Whenever active, players move after receiving informative signals about the history
of the state of the world and action profiles. Specifically, for t ∈ N, after every history
(ωt, at−1) ∈ Ωt×X t−1 with Ti(ω

t, at−1) = 1, player i ∈ N observes a signal si,t ∈ Si and
chooses an action among the available ones according to Ai. When Ti(ω

t, at−1) = 0,
player i is inactive and does not observe private signals nor chooses any non-trivial
action. We assume Si contains the null signal s∗ and Xi the null action a∗, the latter
an isolated point of Xi, and, when Ti(ω

t, at−1) = 0, we assume that γi(ωt, at−1) = s∗

and Ai((st−1
i , s∗), a

t−1
i ) = {a∗}, for any history of private signals st−1

i ∈ St−1
i .

Without loss, we assume player i ∈ N receives a non-zero flow payoff only when
active, i.e., gi(ωt, (at−1, at)) = 0 if Ti(ωt, at−1) = 0 for every (ωt, at−1, at) ∈ Ωt ×X t.

Private histories. To accommodate for the presence of active and inactive players,
we modify our definition of private history. We start by defining an auxiliary notion.

For every period t ∈ N, (sti, a
t−1
i ) ∈ Sti×X t−1

i is a signal-action history if at−1
i,ℓ = a∗

whenever sti,ℓ = s∗ for ℓ ≤ t−1. The set of signal-action histories contained in Sti×X t−1
i

is denoted by Ht
i,∗ and the set of all signal-action histories is Hi,∗ := ∪t∈NHt

i,∗.
A generalized private history of player i is a function of a signal-action history

(sti, a
t−1
i ) ∈ Hi,∗ as follows

hi(s
t
i, a

t−1
i ) :=

(
(sti,ℓ)ℓ≤t, sti,ℓ ̸=s∗ , (a

t−1
i,ℓ )ℓ≤t−1, sti,ℓ ̸=s∗

)
.

Generalized private history hi(s
t
i, a

t−1
i ) collects player i’s signals up to t and ac-

tions up to t − 1, describing the information available to player i before playing
at period t. Notice that, private histories do not record any information from pe-
riods in which players are inactive. For this reason, a player may be oblivious to
the number of moves that have occurred, e.g., for any (sti, a

t−1
i ) ∈ Hi,∗, we have

hi(s
t
i, a

t−1
i ) = hi((s

t
i, s∗), (a

t−1
i , a∗)).

1



For the remainder of the paper, we redefine Hi := ∪hi,∗∈Hi,∗hi(hi,∗) as the set of
player i’s generalized private histories instead of the set of private histories. The
length of a generalized private history hi = hi(s

t
i, a

t−1
i ) is |hi| := |{ℓ ≤ t| sti,ℓ ̸= s∗}|;

for ℓ ≤ |hi|, h(ℓ)i is the truncation of hi up to and including player i’s ℓ’th active
period, so that |h(ℓ)i | = ℓ. Let Ht

i := {hi ∈ Hi||hi| = t} be the set of i’s generalized
private histories of length t ∈ N.

We assume the correspondence Ai is measurable with respect to M(Hi,∗|hi), the
sub σ-algebra of M(Hi,∗) induced by hi, and we write Ai : Hi ⇒ Xi.1

Strategies. For every i ∈ N , HAi
and σi : HAi

→ ∆(Xi) are now formally defined
in terms of generalized private histories.

Conditional measures. The definition of conditional measures is generalized as
follows. Conditional on player i’s actions aτi ∈ Xτ

i and signals sti ∈ Sti , for t, τ ∈
N ∪ {0} with τ ≤ t, the strategy σi induces a transition probability over player i’s
action history ati ∈ X t

i as

pi(a
t
i|sti, aτi , σi) :=

∏
ℓ=τ+1,...,t,
sti,ℓ ̸=s∗

σi
(
ati,ℓ|hi(st,(ℓ)i , a

t,(ℓ−1)
i )

)
(8)

if (sti, a
t,(t−1)
i ) ∈ (hi)

−1(HAi
), at,(τ)i = aτi ; zero otherwise.

Expected payoffs. The definitions of player’s i ∈ N expected payoff and continua-
tion expected payoff apply verbatim to this more general environment. Furthermore,
Lemma 4 still holds.

Constrained equilibria. We adapt the notions of ε̃-constrained and ε̃-constrained
conditional equilibria by defining the objects in Section 3.1 in terms of generalized
private histories instead of private histories.

For every i ∈ N , ε > 0, ε̃i : {(hi, ai)|hi ∈ Hi, ai ∈ Xi} → (0, 1) is now formally
defined in terms of generalized private histories.

Let HN := ΩN×XN be the set of histories with infinite length.2 Define ĥt : HN →
Ht and ĥti : H

N → Hi, for i ∈ N , functions from infinite histories to period-t histories
and player’s i private histories, respectively, by setting ĥt(ω̄, ā) = (ω̄(t), ā(t−1)) and
ĥti(ω̄, ā) = hi(γ

t
i(ω̄

(t), ā(t−1)), ā
(t−1)
i ), for (ω̄, ā) ∈ HN. Notice that ĥti is now defined

over histories of infinite length.
1The sub σ-algebra of M(Hi,∗) induced by hi is M(Hi,∗|hi) := {h−1

i (A)|A ∈ M(Hi)}. For i ∈ N ,
we can write Ai : Hi ⇒ Xi by Theorem 4.41 in Aliprantis and Border (2006).

2For any set Y , denote Y N := {(yt)t∈N|yt ∈ Y,∀t ∈ N}.
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We define P (·|σ) ∈ ∆(HN) as the measure over infinite histories induced by the
strategy profile σ ∈ Σ.3 For every i ∈ N , σ ∈ Σ, ℓ ∈ N, and Z ∈ M(Hℓ

i ), the
probability that player i’s private history belongs to Z under σ is defined in the
general case as Pi(Z|σ) := P (∪t∈N(ĥti)

−1(Z)|σ). If Pi(Z|σ) > 0, player i’s period-t
beliefs over C ∈ M(Ht) conditional on Z can be defined as

P t
i (C|Z, σ) =

P
(
(ĥt)−1(C) ∩ (ĥti)

−1(Z)|σ
)

Pi(Z|σ)
.

For every pair of strategy profiles σ, σ̂ ∈ Σ, and Z ∈ M(Hℓ
i ), for ℓ ∈ N, player i’s

expected payoff conditional on Z from σ and σ̂ is defined as

Ui(σ̂|Z, σ) :=
∑
τ∈N

∫
Hτ

Ui(σ̂|ωτ , aτ−1) dP τ
i (ω

τ , aτ−1|Z, σ).

Finally, a strategy profile σ ∈ Σ(ε̃), for ε̃ ∈ E, is an ε̃-constrained conditional equilib-
rium, if, for every i ∈ N , ℓ ∈ N and Z ∈ M(Hℓ

i ) satisfying Pi(Z|σ) > 0,

Ui(σ|Z, σ) ≥ Ui(σ
′
i, σ−i|Z, σ) ∀σ′

i ∈ Σi(ε̃).

Trembling hand perfect equilibrium. THPE adapts to this more general envi-
ronment with minor adjustments. For every i ∈ N, t ∈ N, the function ai is now
defined over (sti, a

t,(t−1)
i ) ∈ h−1

i (HAi
), for any given σi ∈ Σi as follows.

ai(s
t
i, a

t
i;σi) =

{
a
t,(τ)
i |τ = min

{
τ̂ ≤ t− 1|Πt−1

ℓ≥τ̂+1σi(a
t
i,ℓ|hi(st,(ℓ)i , a

t,(ℓ−1)
i )) > 0

}}
.

Furthermore, the limit strategy σ∗ in Definition 3(ii) is retrieved as follows

σ∗
i

(
ati,t|hi(sti, at,(t−1)

i )
)
=

p∗i
(
ati|sti, at,(τ)i

)
p∗i
(
a
t,(t−1)
i |st,(t−1)

i , a
t,(τ)
i

)
for (sti, a

t,(t−1)
i ) ∈ h−1

i (HAi
), and at,(τ)i = ai(s

t
i, a

t
i;σi), for every i ∈ N , t ∈ N.

We generalize the notions of root of a proper subgame and negligible histories as
well. We say that a history (ωt, at−1) ∈ H is the root of a proper subgame if, for
every (ω̃τ , ãτ−1) ∈ H, if hi(γti(ωt, at−1), at−1

i ) = hi(γ
τ
i (ω̃

τ , ãτ−1), ãτ−1
i ) for all i ∈ N ,

then (ωt, at−1) = (ω̃τ , ãτ−1). Let H∅ ⊆ H denote the set of all such histories. A set
H ∈ M(H) is negligible if P (∪t∈N(ĥt)−1(H ∩Ht)|σ) = 0 for every σ ∈ Σ.

3For each σ ∈ Σ, there is a probability measure P (·|σ) : HN → [0, 1] such that for every t ∈ N,
and measurable, bounded functions rt : Ht → R, r̂ : HN → R, defined as r̂(ω̄, ā) := rt(ĥt(ω̄, ā)),
where (ω̄, ā) ∈ HN, we have that EP (·|σ)(r̂) = EP t(·|σ)(r̂). See Theorem 4.49 in Pollard (2002).
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Markov games. For every i ∈ N , active and inactive players are determined by
the current payoff-relevant state, Ti : ΩR → {0, 1}. Furthermore, for every σ ∈ Σ,
t ∈ N, the objects µRω,t(·|·, σ) : ∪i∈NHi → ∆(ΩR), σi ∈ ΣM

i , and sRi , and the Markov
information condition are formally defined in terms of generalized private histories.

B.2 Additional Notation

For any set Y and Z, define Y ∞ := ∪t∈NY
t and (X × Z)∞ := ∪t∈NX

t × Zt.
For i ∈ N, t ∈ N, (sti, ati) ∈ Sti ×X t

i is a signal-action history up to and including
period t-action if ati,ℓ = a∗ whenever sti,ℓ = s∗ for ℓ ≤ t. The set of signal-action
histories up to and including period t is H̄t

i,∗, and H̄i,∗ := ∪t∈NH̄t
i,∗. A private history

of player i up to and including period t-action is the function of (sti, ati) ∈ H̄i,∗ defined
by h̄i(s

t
i, a

t
i) := ((sti,ℓ)ℓ≤t, sti,ℓ ̸=s∗ , (a

t
i,ℓ)ℓ≤t, sti,ℓ ̸=s∗). The length of private history h̄i =

h̄i(s
t
i, a

t
i) is |h̄i| := |hi(sti, ati)|. We define H̄i := ∪h̄i,∗∈H̄i,∗ h̄i(h̄i,∗), and H̄ℓ

i := {h̄i ∈
H̄i

∣∣|h̄i| = ℓ}. We denote by h̄
(ℓ)
i the truncation of h̄i up to and including the ℓ’th

active period of player i. The sub σ-algebra M(Hi,∗|h̄i) is defined analogously to
M(Hi,∗|hi). Let H̄Ai

:= {(sti, ati) ∈ H̄i| ati,ℓ ∈ Ai(s
t,(ℓ)
i , a

t,(ℓ−1)
i ), ℓ ≤ t}, be the set of

private histories in H̄i that are available according to Ai.
For i ∈ N , let X̄i := Xi ∪ {ā⋆} for some ā⋆ /∈ Xi, isolated point in X̄i. Define

Ai,∗ : ∪t∈NS
t
i × X t−1

i ⇒ Xi as Ai(hi(sti, a
t−1
i )) if (sti, a

t−1
i ) ∈ Hi,∗ and sti,t ̸= s∗; as

{a∗} if (sti, a
t−1
i ) ∈ Hi,∗ and sti,t = s∗; as Ai,∗(sti, a

t−1
i ) = {ā⋆} otherwise. Since Ai

is weakly measurable, Ai,∗ is weakly measurable. Define HAi,∗ := (hi)
−1(HAi

) and
H̄Ai,∗ := (h̄i)

−1(H̄Ai
), and, for t ∈ N, Ht

Ai,∗ := HAi,∗ ∩Ht
i,∗ and H̄t

Ai,∗ := H̄Ai,∗ ∩ H̄t
i,∗.

Denote by Ht
∗ := {(ωt, at−1) ∈ Ht : (γti(ω

t, at−1), at−1
i ) ∈ Hi,∗,∀i ∈ N} period-t ∈

N histories whose projection onto Sti×X t−1
i is a signal-action history for every i ∈ N ,

and let H∗ := ∪t∈NHt
∗. For i ∈ N , hhi : H∗ → Hi maps histories to player’s i private

histories, by setting hhi (ω
t, at−1) = hi(γ

t
i(ω

t, at−1), at−1
i ), for t ∈ N, (ωt, at−1) ∈ Ht

∗.
For every t ∈ N, by combining the counting measure on action profiles in X t−1

and µtω, we define the unconditional measure µtω,a over Ht by setting µtω,a(B) :=∑
at−1∈Xt−1

∫
Ωt 1{(ωt, at−1) ∈ B} dµtω(ωt|at−1) for B ∈ M(Ht

∗).4 We define the condi-
tional measure µtω,a(·|ωt−1, at−2) over Ht and the measure µtω,a over Ωt × X t analo-
gously.

4The counting measure “counts one” for every element of a set. Therefore, if p is a counting
measure over a countable set B and f : B → R,

∫
B
f(b)dp(b) =

∑
b∈B f(p).
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B.3 Proofs of Theorem 1 and 2

SAC, in conjunction with Proposition 5, allows us to write the signal profile transition
for every t ∈ N, st ∈ St, at−1 ∈ X t−1 as

dµts(s
t|at−1) = f t(st, at−1) · dνt(st), (9)

where f t ∈ CI(St × X t−1, νt), and νt(st) =
∏

i∈N ν
t
i (s

t
i) is the product of reference

measures (see footnote 25) defined as νti (sti) :=
∏

ℓ≤t νi,ℓ(s
t
i,ℓ|st,(ℓ−1)

i ).
Let δ < 1. For each i ∈ N , we define αi ∈ ∆(S∞

i ) as

αi(B) :=
1− δ

δ

∑
t∈N

δt · νti (B ∩ Sti ) for every B ∈ M(S∞
i ).

Recall, player i’s strategy σi ∈ Σi is a transition probability from HAi
to probabili-

ties over available actions. We define σ̂i : ∪t∈NS
t
i×X̄ t−1

i → ∆(X̄i), the extension of σi
to ∪t∈NS

t
i × X̄ t−1

i , as the strategy such that σ̂i(·|sti, at−1
i ) has support in Ai,∗(sti, a

t−1
i ),

and coincides with σi whenever (sti, a
t−1
i ) ∈ HAi,∗. Since the set HAi,∗ is measurable,5

an extended strategy is a transition probability from ∪t∈NS
t
i×X̄ t−1

i to X̄i. We denote
the set of extended strategies by Σ̂i, and set of i’s extended strategies that extend an
ε̃-constrained strategy is Σ̂i(ε̃).

For i ∈ N , let Pi be the set of transition probabilities from S∞
i to X̄∞

i . For each
p̂ ∈ Pi, we define the functional

Ii,φi
(p̂) :=

∫
S∞
i

∑
āi∈X̄∞

i

φi(s̄i, āi) · p̂(āi|s̄i), dαi(s̄i),

where φi ∈ CI(S∞
i × X̄∞

i , αi). The weak topology on Pi is the coarsest topology such
that for each φi ∈ CI(S∞

i × X̄∞
i , αi) the functional Ii,φi

(p̂) is continuous in p̂ ∈ Pi.

Lemma 5. For each j ∈ 1, 2, let (ϕλj )λ∈Λ be a net of transition probabilities in
Pi converging to ϕ∗

j . If there exist functions φ1, φ2 ∈ CI(S∞
i × X̄∞

i , αi) such that
ϕλ1 · φ1 + ϕλ2 · φ2 ≥ 0 for every λ ∈ Λ, then for any closed set C ∈ M(X̄∞

i ):∑
āi∈C

(ϕ∗
1(s̄i, āi) · φ1(s̄i, āi) + ϕ∗

2(s̄i, āi) · φ2(s̄i, āi)) ≥ 0,

αi-almost surely.
5The set HAi

is measurable by Theorem 18.6 in Aliprantis and Border (2006).
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Proof. Let ϕ̂ : S∞
i × X̄∞

i → R be of the form ϕ̂(s̄i, āi) = 1{s̄i ∈ S̃i} · ϕ̃(āi) for
some S̃i ∈ M(S̄∞

i ) and some bounded and continuous function ϕ̃ : X̄∞
i → R. Since

ϕ̂ ∈ CI(S∞
i × X̄∞

i , αi), we have∫
S̃i

∑
āi∈X̄∞

i

ϕ̃(āi) ·
(
ϕλ1(s̄i, āi) · φ1(s̄i, āi) + ϕλ2(s̄i, āi) · φ2(s̄i, āi)

)
dαi(s̄i)

→
∫
S̃i

∑
āi∈X̄∞

i

ϕ̃(āi) ·
(
ϕ∗1(s̄i, āi) · φ1(s̄i, āi) + ϕ∗2(s̄i, āi) · φ2(s̄i, āi)

)
dαi(s̄i) ≥ 0.

Let Un = ∪c∈CB(c, 1/n) where be B(c, 1/n) is the ball centered at c ∈ C with
radius 1/n. Since Xi is a compact Hausdorff space, by Theorem 2.46 (Urysohn’s
lemma) and 2.48 in Aliprantis and Border (2006), for each n ∈ N, there is a contin-
uous function fn : Xi → [0, 1] that is equal to 1 in C and it is equal to zero in the
complement of Un. Since fn converges to 1{āi ∈ C} almost surely in the counting
measure in Xi, by setting ϕ̃ = fn in the right hand side of the previous expression,
taking the limit in n, and applying the dominated convergence theorem, we obtain∫
S̃i

∑
āi∈C

(
ϕ∗
1(s̄i, āi) · φ1(s̄i, āi) + ϕ∗

2(s̄i, āi) · φ2(s̄i, āi)
)
dαi(s̄i) ≥ 0, S̃i ∈ M(S̄∞

i ). Fi-
nally, since S̃i is arbitrary, this implies the αi-almost surely inequality.

For every i ∈ N , σ̂i ∈ Σ̂i, t ∈ N, τ ∈ N ∪ {0}, aτi ∈ X̄τ
i we define the transition

probability pi(·|·, aτi , σ̂i) : S∞
i → ∆(X̄∞

i ) as

pi(a
t
i|sti, aτi , σ̂i) :=

{ ∏
j=τ+1,...,t, σ̂i(a

t
i,j |s

t,(j)
i , a

t,(j−1)
i ) if τ < t, aτi = a

t,(τ)
i or τ ≥ t, a

τ,(t)
i = ati

0 otherwise.
.

For σ̂i ∈ Σ̂i, we define ai : S
t
i ×X t

i → ∪τ≤tXτ
i as ai(s

t
i, a

t
i; σ̂i) := {at,(τ)i |τ = min{τ̂ ≤

t− 1|Πt−1
ℓ≥τ̂+1σ̂i(a

t
i,ℓ|st,(ℓ)i , a

t,(ℓ−1)
i ) > 0}}.

Lemma 6. Let {σ̂λi }λ∈Λ be a net in Σ̂i for some directed set Λ and i ∈ N . Suppose
that for each τ ∈ N and aτi ∈ X̄τ

i , the net {pi(·|·, aτi , σ̂λi )}λ∈Λ converges to p∗i (·|·, aτi ) ∈
Pi in the weak topology of Pi. Then:

(i) There exists σ∗
i ∈ Σi that satisfies equation (4) for every (sti, a

t,(t−1)
i ) ∈ HAi,.

(ii) If ε̃ ∈ E and {σ̂λi }λ∈Λ ⊆ Σ̂i(ε̃), then σ∗
i ∈ Σ̂i(ε̃).

Proof. We define σ∗
i : S

t
i ×X t

i → [0, 1] recursively as follows:
- For si ∈ Si, let σ∗

i (ai|si) = p∗,1(ai|si, ∅).
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- Suppose σ∗
i (a

ℓ
i,ℓ|sℓi , aℓ,(ℓ−1)

i ) has been defined for (sℓi , aℓi) ∈ H̄Ai,∗, for every ℓ ≤ t−1,
and let σ̂∗

i denote its extension to ∪ℓ≤t−1S
ℓ
i × X̄ℓ−1

i . For (sti, a
t,(t−1)
i ) ∈ HAi,∗, define

σ∗
i (a

t
i,t|sti, at,(t−1)

i ) :=
p∗i (a

t
i|sti, ai(sti, ati; σ̂∗

i ))

pi(a
t,(t−1)
i |st,(t−1)

i , ai(sti, a
t
i; σ̂

∗
i ), σ̂

∗
i )
.

Remark 1. Consider the following:
1. Notice that ai(s

t
i, a

t
i; σ̂

∗
i ) and pi(a

t,(t−1)
i |st,(t−1)

i , ai(s
t
i, a

t
i; σ̂

∗
i ), σ̂

∗
i ) depend only on

σ̂∗
i |Sℓ

i×X̄
ℓ−1
i

for ℓ ≤ t− 1. Therefore, σ̂∗
i |St

i×X̄
t−1
i

is well-defined (see point 3).

2. By the definition of σ∗
i we have p∗i (ati|sti, ai(sti, ati; σ̂∗

i )) = pi(a
t
i|sti, ai(sti, ati; σ̂∗

i ), σ̂
∗
i )

for every (sti, a
t
i) ∈ H̄t

Ai,∗.

3. By the definition of ai, pi(a
t,(t−1)
i |st,(t−1)

i , ai(s
t
i, a

t
i; σ̂

∗
i ), σ̂

∗
i ) > 0, ∀(sti, ati) ∈ Sti×X̄ t

i .

4. For every σ̂ ∈ Σ̂, the restrictions of pi(a
t,(t−1)
i |st,(t−1)

i , aτi , σ̂i) and ai(s
t
i, a

t
i; σ̂i) to

H̄i,∗, are measurable with respect to the sub σ-algebra of H̄i,∗ induced by hi.

Let ε̃ ∈ E. The extension of ε̃i, ˆ̃εi : (Si× X̄i)
∞ → R, is given by ε̃i(hi(sti, a

t−1
i ), ai)

if (sti, (a
t−1
i , ai)) ∈ H̄i,∗; 0, otherwise. Since a∗ and ā⋆ are isolated points of X̄i, ˆ̃ε is

continuous in (at−1
i , ai) for each sti, and, therefore, we have ˆ̃εi ∈ CI(S∞

i × X̄∞
i , αi).

Next we show that (a.1) If (σ̂λi )λ∈Λ ⊆ Σ̂i(ε̃) then σ∗
i (ai|sti, at−1

i ) ≥
ε̃i(hi(s

t
i, a

t−1
i ), ai) for (sti, (a

t−1
i , ai)) ∈ H̄t

Ai,∗, (a.2) σ∗
i (·|sti, at−1

i ) ∈ ∆(Ai(s
t
i, a

t−1
i )) for

every (sti, a
t−1
i ) ∈ Ht

Ai,∗, and (b) σ∗
i |H̄Ai,∗

is M(H̄Ai,∗|h̄i)-measurable.

Proof of (a.1) and (a.2). We argue by induction. Let t ∈ N, and suppose that
(a.1) and (a.2) hold for σ∗

i (·|sℓ−1
i , aℓ−2

i ) with (sℓ−1
i , aℓ−2

i ) ∈ Hℓ−1
Ai,∗, for ℓ ≤ t. Note

first that for τ ≤ t, and aτi ∈ X̄τ
i , pi(a

t−1
i |st−1

i , aτi , σ̂
α
i ) converges to p∗i (a

t−1
i |st−1

i , aτi )

in the weak topology of (Sti × X̄ t
i , ν

t
i ). In fact, for any ϕ ∈ CI(Sti × X̄ t

i , ν
t
i ),∫

Si

∑
ai∈X̄i

ϕ(sti, a
t−1
i , ai) dνi,t(si|st−1

i ) belongs to CI(St−1
i × X̄ t−1

i , νt−1
i ). In fact, it

is measurable with respect to st−1
i (Theorem 2.6.4 in Ash (2014)), and continu-

ous in (at−1
i , ai) for each st−1

i by the dominated convergence theorem.6 Therefore,
the convergence of pi(at−1

i |st−1
i , aτi , σ̂

λ
i ) to p∗i (a

t−1
i |st−1

i , aτi ) in the weak topology of
(St−1

i × X̄ t−1
i , νt−1

i ) yields convergence in the weak topology of (Sti × X̄ t
i , ν

t
i ).

Proof of (a.1). Assume (σ̂λi )λ∈Λ ⊆ Σ̂i(ε̃). By the induction hypothesis,
ai(s

t
i, a

t
i; σ̂

∗
i ) = ∅ for (sti, ati) ∈ H̄Ai,∗. Now, for λ ∈ Λ, and ((st−1

i , si), (a
t−1
i , ai)) ∈ H̄Ai,∗

pi(a
t−1
i |st−1

i , ∅, σ̂λi )
(
σ̂λi
(
ai|(st−1

i , si), a
t−1
i

)
− ˆ̃εi

(
(st−1
i , si, a

t−1
i ), ai

) )
≥ 0.

6Fix ai ∈ Xi. As ϕ is continuous in ati ∈ Xt
i , (at−1,n

i , ai) → (at−1,∗
i , ai) implies

ϕ((st−1
i , si, a

t−1,n
i ), ai) → ϕ((st−1

i , si, a
t−1,∗
i ), ai) for every (st−1

i , si) ∈ St
i . Furthermore, ϕ is bounded

by an L1(St
i , ν

t
i ) function.
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By Lemma 5 with C = {(at−1
i , ai)}, νti -almost surely for ((st−1

i , si), (a
t−1
i , ai)) ∈ H̄Ai,∗

pi(a
t−1
i |st−1

i , ∅, σ̂∗
i )
(
σ̂∗
i (ai|(st−1

i , si), a
t−1
i )− ˆ̃εi

(
(st−1
i , si, a

t−1
i ), ai

) )
≥ 0.

By Remark 1.3, this yields the desired result.

Proof of (a.2). Since
∑

ai∈Xi
σ̂λi (ai|(st−1

i , si), a
t−1
i ) = 1 for all λ ∈ Λ,

((st−1
i , si), a

t−1
i ) ∈ Ht

Ai,∗, by Lemma 5, we obtain

pi(a
t−1
i |st−1

i , a
t,(τ)
i , σ̂∗

i )

( ∑
ai∈Xi

σ̂∗
i (ai|(st−1

i , si), a
t−1
i )− 1

)
= 0,

νti -almost surely for every ((st−1
i , si), a

t−1
i ) ∈ Ht

Ai,∗ s.t. at,(τ)i = ai((s
t−1
i , si), a

t−1
i ; σ̂∗

i ).7

As this is true for each τ ≤ t−1, this shows σ∗
i (·|sti, at−1

i ) ∈ ∆(Xi) for (sti, a
t−1
i ) ∈ Ht

Ai,∗.
We now show that, supp σ∗

i (·|sti, at−1
i ) ⊆ Ai(s

t
i, a

t−1
i ) for every (sti, a

t−1
i ) ∈ Ht

Ai,∗.
In fact, define the function φ̂i : (Si× X̄i)

∞ → R as φ̂i(sti, ati) := inf{d(ati, ãti)|(sti, ãti) ∈
H̄Ai,∗}, where d is a distance in the metric space X̄ t.8 The function φ̂i is continuous
in ati, as it is a “distance to a set” function, and it is measurable in sti for each ati.9

The function φ̂i(s
t
i, a

t
i) is zero for (sti, a

t
i) ∈ H̄Ai,∗, and strictly positive otherwise, as

Ai is closed-valued. For ãi ∈ Xi, by Lemma 5 for C = {(at−1
i , ãi)}, we obtain

φ̂i(s
t−1
i , si, a

t−1
i , ãi) · pi(at−1

i |st−1
i , a

t,(τ)
i , σ̂∗

i ) · σ̂∗
i (ãi|(st−1

i , si), a
t−1
i ) = 0,

νti -almost surely for ((st−1
i , si), a

t−1
i ) ∈ Ht

Ai,∗ such that at,(τ)i = ai((s
t−1
i , si), a

t−1
i , σ̂∗

i ).
This shows that σ̂∗

i (ãi|(st−1
i , si), a

t−1
i ) = 0 if ((st−1

i , si), a
t−1
i ) ∈ Ht

Ai,∗, but ãi /∈
Ai((s

t−1
i , si), a

t−1
i ). Hence, σ̂∗

i (·|(st−1
i , si), a

t−1
i ) ∈ ∆(Ai((s

t−1
i , si), a

t−1
i )).

Proof of (b). It follows by Lemma 16 that p∗|H̄i,∗ must be measurable with respect
to the sub σ algebra M(H̄i,∗|h̄i).

Proof of Theorem 1. Let the weak topology on Σ̂i be the coarsest topology such
that the functional Iφi

(pi(·|·, ∅, σ̂i)) is continuous for every Carathédory integrand
φi ∈ CI((Si × X̄i)

∞, αi). The weak topology on Σ̂ = ×i∈N Σ̂i is the product topology,
7Notice that ai(s

t
i, a

t
i, σ̂

∗
i ) does not depend on the value of ati,t. Thus, we abuse notation slightly

by writing ai((s
t−1
i , si), a

t−1
i , σ̂∗

i ).
8The distance d can be any distance that generates the product topology. Without loss of

generality, we can assume ā⋆ is at distance 1 from every element in Xt.
9This follows by the measurable maximum theorem as Ai is weakly measurable and non-empty

and compact valued. See Theorem 18.19 in Aliprantis and Border (2006).
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where each Σ̂i is endowed with its weak topology. By Lemma 6, for each i ∈ N , Σ̂i(ε̃)

is closed in the weak topology.10

In the remainder, we define Ui over the set of extended strategies by setting, for
every t ∈ N and at ∈ X̄ t, gi(·, at) = 0 whenever atj,τ = ā⋆ for some j ∈ N and τ ≤ t.

Lemma 7. Under payoff boundedness, continuity, and SAC, for every i ∈ N , Ui(σ)
is continuous in the weak topology of Σ̂.

Proof. Let (σ̂λ)λ∈Λ be a net in Σ̂ that converges to σ̂∗ in the weak topology. We will
show that Ui(σ̂λ) → Ui(σ̂

∗).
Let P̄ t be the projection of Ωt × X t onto St × X t, i.e., P̄ t : Ωt × X t → St × X t

is such that P̄ t(ωt, at) = (γt(ωt, at,(t−1)), at) for (ωt, at) ∈ Ωt×X t. The sub σ-algebra
of M

(
Ωt ×X t

)
induced by P̄ t is M(Ωt ×X t|P̄ t) := {(P̄ t)−1(B)|B ∈ M

(
St ×X t

)
}.

For at ∈ X t, let E(gi,t(·, at)|P̄ t) denote the expectation of gi,t(·, at) := gi(·, ·)|Ωt×{at}

with respect to the sub-σ-algebra M(Ωt × X t|P̄ t), where the measure in Ωt × {at}
is µtω(·|at). By Theorem 4.41 in Aliprantis and Border (2006) there is a measurable
function Eat

gi
: (S ×X)∞ → R such that Eat

gi
(P̄ t(·, at)) = E(gi,t(·, at)|P̄ t).

If X is infinite, let ĝi,t be defined as in our payoff continuity condition. Define
g̃i,t : S

t ×X t → R as g̃i,t(st, at) := Eat

gi
(st) if X is finite and as ĝi,t(st, at), otherwise.

Let σ ∈ Σ̂, we have Ui,t(σ) =
∑

at∈Xt

∫
St g̃i,t(s

t, at)·f t(st, at,(t−1))·p(at|st, σ) dνt(st) where
the equality follows by Theorems 4.41 and 13.46 in Aliprantis and Border (2006) and
equation (9). By Proposition 5, SAC(b) implies f t(st, at,(t−1)) ∈ CI(St × X̄ t−1, νt);
payoff continuity implies there is a version of g̃i,t(st, at) ∈ CI(St× X̄ t, νt). Therefore,
there is a version of g̃i,t(st, at) · f t(st, at,(t−1)) ∈ CI(St × X̄ t, νt), and by Theorem 2.5
in Balder (1988), we obtain Ui,t(σ̂λ) → Ui,t(σ̂

∗).
Now, by Lemma 4, |Ui(σ)| =

∣∣∑∞
t=1 Ui,t(σ)

∣∣ ≤ ∑t∈N supσ∈Σ |Ui,t(σ)| < ∞, where
the last inequality follows by payoff boundedness. Therefore, Ui(σ̂λ) → Ui(σ̂

∗) follows
by applying the dominated convergence theorem over nets shown in Proposition 8.

Let ε̃ ∈ E. Define the ε̃-constrained best response correspondence r as in the
proof sketch of Theorem 1, but on the set of induced extended transition probabilities
P̂i(ε̃) := {pi(·|·, σi)|σi ∈ Σ̂i(ε̃)}.

The topological spaces P̂(ε̃), endowed with the relative weak topology, and Σ̂(ε̃)

are homeomorphic. To see this, notice that, by the definition of σi ∈ Σ̂(ε̃), the ratio

10Endow Σ̂i(ε̃) with the relative topology inherited from the weak topology on Σ̂i, and Σ̂(ε̃) :=
×i∈N Σ̂i(ε̃) with the corresponding product topology.
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σi
(
ati,t|sti, at,(t−1)

i

)
=

pi
(
ati|sti, σi

)
pi
(
a
t,(t−1)
i |st,(t−1)

i , σi
) (10)

is well-defined for every t ∈ N, (sti, a
t,(t−1)
i ) ∈ HAi,∗, where pi(·|·, σi) ∈ P̂(ε̃) and we

set pi(a
t,(0)
i |st,(0)i , σi) := 1. If (sti, a

t,(t−1)
i ) /∈ HAi,∗ and the ratio is not well-defined, set

it to 1 when ati,t = ā⋆, and to 0 otherwise.
For every i ∈ N , define i’s utility over the set of induced extended transition

probabilities as Ũi(p(·|·, σ)) = Ui(σ). By Lemma 7, and the homeomorphism between
Σ̂(ε̃) and P(ε̃), Ũi is continuous.

Relying on the homeomorphism introduced in equation (10), every fixed point of
r is mapped to a strategy profile that, by definition, corresponds to a ε̃-constrained
equilibrium. We establish that r has a fixed point by applying the Kakutani-Fan-
Glicksberg fixed point theorem. In particular, we show that: (1) P̂(ε̃) is compact,
and (2) convex; (3) r has closed graph, (4) is non-empty, and (5) convex valued.11

Point (1) follows by Lemma 6 and Theorem 2.3 in Balder (1988); (4) follows by
(1) and the continuity of Ũi; (5) follows by Lemma 4. We show points (2) and (3).

(2) P̂(ε̃) is convex. Let p′, p′′ ∈ P̂(ε̃), with associated strategies σ′ and σ′′, respec-
tively. To show that λ · p′ + (1 − λ) · p′′ ∈ P̂(ε̃) for every λ ∈ [0, 1] it is sufficient to
show λ · p′i + (1− λ) · p′′i ∈ P̂i(ε̃) for every i ∈ N . In particular, we prove that exists
σi ∈ Σ̂i(ε̃) such that (λ · p′i+ (1− λ) · p′′i )(ati|sti) = pi(a

t
i|sti, σi). Let σi be defined as in

equation (10). We show that σi ∈ Σi(ε̃). Measurability of σi follows from Theorem
4.27 in Aliprantis and Border (2006). For every (sti, a

t,(t−1)
i ) ∈ HAi,∗, σi ∈ [0, 1], since

pi(a
t,(t−1)
i |st,(t−1)

i ) ≥ pi(a
t
i|sti) for every pi ∈ P̂i(ε̃). Furthermore, if ati,t ̸= ā⋆, we have

σi
(
ati,t|sti, at,(t−1)

i

)
=

σ′i
(
ati,t|sti, a

t,(t−1)
i

)
· λ · pi(at,(t−1)

i |st,(t−1)
i , σ′i)

λ · pi(at,(t−1)
i |st,(t−1)

i , σ′i) + (1− λ) · pi(at,(t−1)
i |st,(t−1)

i , σ′′i )

+
σ′′i
(
ati,t|sti, a

t,(t−1)
i

)
· (1− λ) · pi(at,(t−1)

i |st,(t−1)
i , σ′′i )

λ · pi(at,(t−1)
i |st,(t−1)

i , σ′i) + (1− λ) · pi(at,(t−1)
i |st,(t−1)

i , σ′′i )
≥ ε̃((sti, a

t,(t−1)
i ), ati,t).

where the equality follows from equation (8), and the inequality follows as σ′, σ′′ ∈
Σ̂(ε̃). Finally,

∑
ai∈X̄i

σi(ai|sti, at,(t−1)
i ) = 1 follows from the equality above as well.

(3) r has closed graph. Let (pλ) and (p̂λ) be two nets of transition probabilities
such that, for every λ ∈ Λ, p̂λ ∈ r(pλ), p̂λ → p̂∗ and pλ → p∗, where all convergences

11We identify P̂i(ε̃) with its quotient space, by associating each transition probability with the
equivalence class of transition probabilities yielding the same Ii,φi

for every φi on CI((Si×X̄i)
∞, αi).

As discussed in Balder (1988) this quotient space is a locally convex Hausdorff space.
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are in the weak topology. Let us show that p̂∗ ∈ r(p∗).
The condition p̂λ ∈ r(pλ) implies that, for every i ∈ N , pi ∈ P̂i(ε̃), Ũi(p̂λi , pλ−i) ≥

Ũi(pi, p
λ
−i). Also, notice that, by the definition of weak convergence, (p̂λi , p

λ
−i) →

(p̂∗i , p
∗
−i) and (pi, p

λ
−i) → (pi, p

∗
−i). Thus, as Lemma 7 implies continuity of Ũi, we

obtain Ũi(p̂∗i , p∗−i) ≥ Ũi(pi, p
∗
−i), for each i ∈ N , which shows that p̂∗ ∈ r(p∗). □

Proof of Theorem 2. By Remark 2.4 in Balder (1988), Σ̂ is weakly sequentially
compact. Therefore, for any sequences (εn)n∈N in R+, (ε̃n)n∈N in E, and (σn)n∈N in
Σ such that, for each n ∈ N, ε̃n ∈ E(εn), σn is ε̃n-constrained, and limn→∞ εn = 0,
we can construct sequences {pi(·|·, aτi , σ̂ni )}n∈N that converge to p∗i (·|·, aτi ) in the weak
topology of Pi for each τ ∈ N and aτi ∈ X̄τ

i . Theorem 2 follows by Lemma 6. □

B.4 Proof of Theorem 3

MAC, together with Proposition 5, implies that, for every t ∈ N, st ∈ SR,t, at−1 ∈
X t−1, we can write the payoff-relevant signal profile transition as dµR,ts (st|at−1) =

f t(st, at−1) ·dνM,t(st), where f t ∈ CI(SR,t×X t−1, νM,t), and νM,t(st) :=
∏

i∈N ν
M,t
i (sti)

is the product of the reference measures νM,t
i (sti) :=

∏
ℓ≤t ν

M
i,ℓ (s

t
i,ℓ). For instance, each

νMi,t ∈ ∆(SRi ) can be constructed as dνMi,t (si) :=
∑

at−1∈Xt−1 ξi(a
t−1) · dµMsi,t(si|at−1) for

ξi arbitrary collection of strictly positive weights.
We say that player i’s strategy is non-stationary Markov if in each period it only

depends on the payoff-relevant component of i’s signal but may condition on the
length of the i’s private history at the time of play.

Denote by Σ̂nsM
i the set of player’s i extended non-stationary Markov strategies

and by Σ̂nsM the corresponding set of strategy profiles. Define the weak topology on
Σ̂nsM
i as the coarsest topology such that, for t ∈ N, the functional Iti,φi

: Σ̂nsM
i → R

Iti,φi
(σ̂nsMi ) :=

∫
SR
i

∑
ai∈X̄i

φi(si, ai) · σ̂nsMi (ai|si, t) dνMi,t (si), is continuous for every

φi ∈ CI(SRi × X̄i, ν
M
i,t ). The weak topology on Σ̂nsM is the product topology, where

each Σ̂nsM
i is endowed with its weak topology.

Denote by Σ̂nsM
i (ε̃) and Σ̂nsM(ε̃) the sets of non-stationary Markov ε̃-constrained

strategies, and endow them with the relative and product topology, respectively. By
Lemma 6 with τ = t− 1, Σ̂nsM

i (ε̃) is closed in the weak topology, for each i ∈ N . The
corresponding sets of stationary Markov strategies are denoted by the superscript M .
Note that, Σ̂M and Σ̂M(ε̃) are closed subsets of Σ̂nsM and Σ̂nsM(ε̃), respectively.

Define Ui over the set of extended non-stationary Markov strategies by setting,
for t ∈ N, at ∈ X̄ t, gi(·, at) = 0 whenever atj,τ = ā⋆ for j ∈ N and τ ≤ t.
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Lemma 8. Under payoff boundedness, continuity, and MAC, for every i ∈ N , Ui(σ)
is continuous in the weak topology of Σ̂nsM .

Proof. Let (σ̂λ)λ∈Λ be a net in Σ̂nsM that converges to σ̂∗ in the weak topology. We
will show that Ui(σ̂λ) → Ui(σ̂

∗).
For every σnsM ∈ Σ̂nsM , by applying Lemma 4, payoff boundedness, payoff

continuity, and MAC, together with Theorems 4.41 and 13.46 in Aliprantis and
Border (2006), we have

Ui,t(σ
nsM) =

∑
at∈Xt

∫
St

ĝi(s
t, at) · p(at|st, σnsM) dµts

(
st|at

)
=
∑
at∈Xt

∫
SR,t

ĝi,t(s
t, at) · f t(st, at,(t−1)) ·

∏
i∈N,ℓ≤t

σnsMi (ati,ℓ|sti,ℓ, ℓ) dνM,t(st)

where the second equality follows as ĝi,t(st, at) = ĝi,t(s
R,t, at) is constant on payoff-

relevant signals by Markov payoff, and p(at|st, σnsM) = p(at|sR,t, σnsM) by definition
of non-stationary Markov strategy, respectively.

By Proposition 5, MAC(b) implies there is a version of f t(st, at,(t−1)) ∈ CI(SR,t×
X̄ t−1, νM,t); payoff continuity implies there is a version of ĝi,t(st, at) · f t(st, at,(t−1)) ∈
CI(SR,t × X̄ t, νM,t). Thus, by Theorem 2.5 in Balder (1988), we obtain Ui,t(σ̂

λ) →
Ui,t(σ̂

∗).
By Lemma 4, and payoff boundedness, |Ui(σ)| =

∣∣∑∞
t=1 Ui,t(σ)

∣∣ ≤∑
t∈N supσ∈Σ |Ui,t(σ)| <∞. Therefore, by applying Proposition 8 we obtain Ui(σ̂λ) →

Ui(σ̂
∗).

Let ε̃ ∈ E. Define the ε̃-constrained best response correspondence rM : Σ̂M(ε̃) →
Σ̂M(ε̃) as usual. We establish rM has a fixed point by applying the Kakutani-Fan-
Glicksberg fixed point theorem. In particular, we show: (1) Σ̂M(ε̃) is compact, and
(2) convex; (3) rM has closed graph, (4) is non-empty, and (5) convex valued.12 Point
(1) follows by Lemma 6 and Theorem 2.3 in Balder (1988); point (2) is straightfor-
ward; point (3) holds as argued in Theorem 1, applying Lemma 8; point (4) follows
by (1) and the continuity of Ui; point (5) follows by the next lemma.

12As before, we identify P̂M
i (ε̃) with its quotient space of transition probabilities yielding the

same It
i,φi

for every φt
i ∈ CI(St

i × X̄t
i , ν

M,t
i ), t ∈ N. By Balder (1988) this quotient space is locally

convex Hausdorff.
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Lemma 9. If σ̂i, σ̃i ∈ rMi (σ) for σ ∈ Σ̂M(ε̃) then σλi := λ · σ̂i + (1− λ) · σ̃i ∈ rMi (σ)

for every λ ∈ (0, 1).

Proof. Let (σλ,ti , σi) denote the strategy that coincides with λ · σ̂i + (1 − λ) · σ̃i in
i’s first t active periods and equals σi ∈ Σ̂M

i in later active periods. We will show,
inductively in t, that Ui((σλ,ti , σ̂i), σ

M
−i) = Ui((σ

λ,t
i , σ̃i), σ

M
−i) = Ui(σ̂i, σ

M
−i) = Ui(σ̃i, σ

M
−i)

for every t ∈ N ∪ {0}. The statement is clearly true for t = 0.
Suppose the induction hypothesis holds for t ≤ τ . We show it holds for

t = τ + 1. We can write Ui((σ
λ,τ+1
i , σ̂i), σ

M
−i) = λ · Ui((σλ,τi , σ̂i), σ

M
−i) + (1 − λ) ·

Ui((σ
λ,τ
i , σ̃i,τ+1, σ̂i), σ

M
−i), where (σλ,τi , σ̃i,τ+1, σ̂i) is the strategy that is equal to σλ,τi in

the first τ active periods, equal to σ̃i in active period τ+1 and equal to σ̂i afterwards.
We can write Ui(σ) =

∫
Hτ+1

i
Ui(σ|hi, σ−i)pi(ai(hi)|si(hi), σi)dP−i(hi|σ−i), for any

σ ∈ Σ̂, where the measurable functions ai(hi) and si(hi) project the private history
hi ∈ Hi onto X |hi|

i and S
|hi|
i , respectively, and Ui(σ|hi, σ−i) is defined as in equation

(11). Therefore, condition (13) in Lemma 11 implies that Ui((σλ,τi , σ̃i,τ+1, σ̂i), σ
M
−i) =

Ui((σ
λ,τ
i , σ̃i), σ

M
−i), which concludes our induction argument. The lemma follows by

payoff boundedness, as it implies that Ui((σλ,ti , σ̂i), σ
M
−i) converges to Ui(σλi , σM−i).

Remark 2. In a Markov game with discounted payoffs an argument analogous to
the one above establishes the existence of a stationary Markov equilibrium.

For every i ∈ N , σ ∈ Σ, ℓ ∈ N and Z ∈ M(SRi ), define the probability that player
i’s payoff relevant signal belongs to Z and yields a private history of length t̂ under σ
as P t̂,R

i (Z|σ) := Pi(∪t∈N(ĥti)
−1((sRi )

−1(Z)∩Ht̂
i )|σ). Furthermore, define the transition

probability P t̂
i (·|·, σ) : SRi → ∆(Ht̂

i ) as dPi(hi|σ) = dP t̂
i (hi|sRi , σ)× dP t̂,R

i (sRi |σ).

Lemma 10. If σM is a fixed point of rM for ε̃ ∈ E, then Ui(σ
M) ≥ Ui(σi, σ

M
−i) for

every i ∈ N , σi ∈ Σ̂(ε̃).

Proof. Suppose that σM is a fixed point of rM and that there is a player i ∈ N ,
β > 0 and a strategy σ′

i ∈ Σ̂i(ε̃) such that Ui(σ′
i, σ

M
−i) − Ui(σ

M) = β > 0. By payoff
boundedness, there is t̂ ∈ N such that the strategy σi coinciding with σ′

i in the first
t̂ active periods and with σMi , otherwise, satisfies Ui(σi, σM−i)− Ui(σ

M) ≥ β/2 > 0.
We show that we can construct a strategy that is non-stationary Markov in active

period t̂ that is also a profitable deviation. Arguing recursively we then show that
σMi must have a profitable deviation that is non-stationary Markov.
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Let Ĥi,t̂ := ∪t∈N(hi ◦ γt)−1(Ht̂
i ) be the set of histories in H that yield a player i

private history of length t̂. For every σ ∈ Σ define t̂’th active period strategy as

σ̃M,t̂
i (ai|sRi ) :=

∫
Ht̂

i

σi(ai|hi)dP t̂
i (hi|sRi , σi, σM−i),

for every sRi ∈ sRi (H
t̂
i ). Define the strategy σ̃i to correspond to σi in the first t̂ − 1

active periods, to σ̃M,t̂
i at t̂, and to σMi thereafter.

Denote by p̄R the projection of histories in H∗ onto ∪t∈NΩR×X t−1. The transition
µRω,t(·|·, σ) : ∪i∈NHi → ∆(ΩR) conditional on σ ∈ Σ is defined by∫
(ΩR)t−1×Ω̂×Xt−1∩(p̄R◦hhi )−1(Z)

p(at−1|ωt−1, σ)dµR,tω (ωt, ω
t−1|at−1) =

∫
Z

dµRω,t(Ω̂|hi, σ) dPi(hi|σ),

for Ω̂ ∈ M(ΩR), Z ∈ Hℓ
i for some i ∈ N, ℓ ∈ N, where µR,tω denotes the transition

probability for payoff-relevant states.
Let σ = (σi, σ

M
−i), t, τ ∈ N, t > τ . The measure P h,t(·|ωτ , aτ , σ) over time-t states

and actions in ΩR × X induced by σ after state action pair (ωτ , aτ ) ∈ ΩR × X is
defined by

P h,t(Ω̂×X̂|ωτ , aτ , σ) :=
∑

at∈Xt−1×X̂

∫
ΩR,t−(τ+1)×Ω̂R

p(at|ωt, aτ0, σ)
t∏

k=τ+1

dµRω (ω
t
k|ωtk−1, a

t
k−1),

for each Ω̂R × X̂ ∈ M(ΩR×X), and where aτ0 ∈ Xτ , with aτ0,τ = aτ . Notice that P h,t

is independent of the choice of aτ0 when σ is a Markov strategy. The sum of player i’s
expected flow payoffs over periods t ≥ t̂ and σ is given by

Ui,t̂→∞(σ) =
∑

τ≥t̂,t≥t̂

∫
SR
i

∫
Ht̂

i

∫
ΩR×X

∫
ΩR×X

gi(ωt, at) · σi(ai,τ |hi) · σM−i(a−i,τ |ωτ )

dP h,t(ωt, at|ωτ , aτ , σ) dµRω,τ (ωτ |hi, σ) dPi(hi|sRi , σ) dPRi (sRi |σ) = Ui,t̂→∞(σ̃i, σ
M
−i)

where the last equality follows from σi Markov after i’s active period t̂, and the Markov
payoff assumption, as dµRω,τ (ωτ |hi, σ) depends on hi only through sRi (hi). Since player
i’s flow payoffs from active periods 1 through t̂− 1 are equal under σi and σ̃i, we can
conclude that Ui(σ) = Ui(σ̃i, σ

M
−i).

We now show that σM−i has a stationary Markov best response. Let us first show
that σMi does not have a profitable one-shot deviation, i.e., a strategy that yields a
higher payoff but only differs from σMi in one active period. In fact, suppose σMi has
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a profitable one-shot deviation σ̃Mi that differs from σMi in active period t. Therefore,
the strategy σt,t

′

i that coincides with σ̃Mi from periods t through t′ for t′ > t, t′ ∈ N,
and with σMi in all other periods must also be a profitable deviation. However, by
payoff boundedness, as t′ converges to ∞ the expected payoff of σt,t

′

i converges to that
of σt,∞i —the strategy that coincides with σMi up to period t − 1 and coincides with
σ̃Mi afterwards. Hence, σt,∞i must also be a profitable deviation. However, since, by
Markov information, we can write Ui(σM |hi, σM−i) = Ui(σ

M |sRi (hi), σM−i), the fact that
σt,∞i is a profitable deviation contradicts the optimality of σMi implied by condition
(13) in Lemma 11.

Let σnSMi be a Markov non-stationary best response, and σM,t
i a best response

among the strategies that coincide with σMi from the t+1’th active period on. These
best responses exist by compactness and Lemma 8. By payoff boundedness, for every
ε, there is a t, |Ui(σnSMi , σM−i) − Ui(σ

M,t
i , σM−i)| < ε. For every t ∈ N, we will argue

that Ui(σM,t
i , σM−i) = Ui(σ

M), which, in light of the previous inequality, establishes the
desired conclusion. In fact, since σMi does not have one-shot deviations, the strategy
that coincides with σM,t

i in the first t − 1 active periods and with σMi from period t

on, must give i the same expected payoff as σM,t
i from active periods t+ 1 on. Thus,

applying this argument recursively, we obtain Ui(σMi ) = Ui(σ
M,t
i , σM−i).

The previous arguments show that, for every ε̃ ∈ E, there exist a fixed point of
rM , and, by Lemma 10, is an ε̃-constrained equilibrium.

Let (ε̃n)n∈N in E with ε̃n ∈ E(εn), and εn → 0, and σn be a stationary Markov
ε̃n-constrained equilibrium. Passing to a subsequence, there is a strategy σ∗ such that
σn converges to σ∗ in the weak topology. Notice that this convergence also implies
convergence in the sense of THPE.

B.5 Proof of Propositions 1 and 2

For Z ∈ M(Hℓ
i ), ℓ ∈ N, let Hi(Z) := {hi ∈ Hi|h(ℓ)i ∈ Z} be the set of private histories

that follow private histories in Z. We say that a strategy σ′
i ∈ Σi is a continuation

of strategy σi ∈ Σi after Z if σi coincides with σ′
i in every hi /∈ Hi(Z). The set of

strategies that are a continuation of σi after Z is denoted Σi(σi, Z). For a pair of
strategies σi, σ′

i ∈ Σi we write (σ′
i|Z , σi) for the strategy in Σi(σi, Z) that coincides

with σ′
i at private histories in Hi(Z), and is equal to σi otherwise.

Let ℓ ∈ N, aℓi ∈ (Xi \ {a∗})ℓ. Define Hi(a
ℓ
i) := {hi ∈ Hℓ

i |hi = (sℓi , a
ℓ
i), s

ℓ
i ∈ Sℓi}.

Let σi(aℓi) denote the strategy that takes action aℓi,t in active period t when it is
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feasible and takes action ā⋆, otherwise. Define P−i(Z|σ−i) = Pi(Z|(σi(aℓi), σ−i)) for
Z ∈ M(Hi(a

ℓ
i)), for some aℓi ∈ (Xi \ {a∗})ℓ.

Let σ−i ∈ Σ−i, and the transition probability Pω|hi(·|·, σ−i) : Hi → ∆(H) defined
by∫
C∩(hhi )

−1
(Z)

p−i(a
t−1 | ωt,(t−1), σ)dµtω,a(ω

t, at−1) =

∫
Z
Pω|hi

(
C | hi, σ−i

)
dP−i(hi | σ−i),

for Z ∈ M(Hi(a
ℓ
i)), aℓi ∈ (Xi \ {a∗})ℓ and C ∈ M(H). Define

Ui(σ̂|hi, σ−i) :=
∑
τ∈N

∫
Hτ

Ui(σ̂|ωτ , aτ−1) dPω|hi(ω
τ , aτ−1|hi, σ−i). (11)

Lemma 11. Let (σi, σ−i) ∈ Σ, and Z ∈ M(Hℓ
i ), ℓ ∈ N, with Pi(Z|σ) > 0. Let the

set Σ̃i ⊆ Σi for i ∈ N , be such that (σ′
i|Z , σi) ∈ Σ̃i for every σ′

i ∈ Σ̃i. If

Ui(σi, σ−i) ≥ Ui(σ
′
i, σ−i) ∀σ′

i ∈ Σ̃i, (12)

then
Ui(σi, σ−i|Z, σ) ≥ Ui(σ

′
i, σ−i|Z, σ) ∀σ′

i ∈ Σ̃i.

Furthermore, if Pω|hi exists then, for hi ∈ Hi \N for some N with P−i(N |σ−i) = 0,

Ui(σi, σ−i|hi, σ−i) ≥ Ui(σ
′
i, σ−i|hi, σ−i) ∀σ′

i ∈ Σ̃i. (13)

Proof. We argue by contradiction. Suppose that σi satisfies equation (12), but there
are ℓ ∈ N, Z ∈ M(Hℓ

i ) with Pi(Z|σ) > 0, and σ′
i ∈ Σ̃i such that

Ui(σ|Z, σ) < Ui(σ
′
i, σ−i|Z, σ).

By the definition of P t
i , for every C ∈ M(Ht), we have that

P t
i (C|Z, σ) =

∫
C∩(hhi )−1(Z)

p(at−1|ωt,(t−1), σ)dµtω,a(ω
t, at−1)

Pi(Z|σ)
.

Therefore, multiplying both sides by Pi(Z|σ) > 0, we obtain

∑
τ∈N,
t≥τ

∫
(hhi )

−1(Z)∩Hτ

Ui,t(σ|ωτ , aτ−1)p(aτ−1|ωτ,(τ−1), σ) dµτω,a(ω
τ , aτ−1)

<
∑
τ∈N,
t≥τ

∫
(hhi )

−1(Z)∩Hτ

Ui,t(σ
′
i, σ−i|ωτ , aτ−1)p(aτ−1|ωτ,(τ−1), σ) dµτω,a(ω

τ , aτ−1). (14)
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By the definition of Ui,t(σ|ωτ , aτ−1), the previous expression yields,

∑
t∈N

∫
Ωt

1{hhi (ωt, at,(t−1)) ∈ Hi(Z)} · gi(ωt, at) · p(at|ωt, σ) dµtω,a(ωt, at,(t−1))

<
∑
t∈N

∫
Ωt

1{hhi (ωt, at,(t−1)) ∈ Hi(Z)} · gi(ωt, at) · p(at|ωt, (σ′′i , σ−i)) dµtω,a(ωt, at,(t−1)),

where σ′′
i = (σ′

i|Z , σi). Since σ′′
i belongs to Σ̃i, and σ′′

i coincides with σi at hi /∈ Hi(Z),
this contradicts that σi is a best response, as required by condition (12).

Similarly, if there is a set Z with P−i(Z|σ−i) > 0, and a strategy σ′
i ∈ Σ̃i such that

condition (13) does not hold, then we obtain a contradiction by multiplying equation
Ui(σi, σ−i|hi, σ−i) < Ui(σ

′
i, σ−i|hi, σ−i) by the corresponding pi and integrating by

dP−i(hi|σ−i) over Z, which yields equation (14).

Proof of Proposition 1. The fact that an ε̃-constrained equilibrium is an
ε̃-constrained conditional equilibrium follows by Lemma 11 by setting Σ̃i = Σi(ε̃). □

Proof of Proposition 2. For h ∈ H∅, we have that (hhi )−1(hhi (h)) is a singleton.
Therefore, Pω|hi(h|hi, σ−i) = 1{hi = hhi (h)}, since the right hand side is a proba-
bility measure. This implies that Ui(σ̂|hi, σ−i) is independent of σ−i and equal to
Ui(σ̂|ωt, at−1) for (ωt, at−1) = (hhi )

−1(hi). Therefore, by condition (13) in Lemma 11
we obtain the following lemma.

Lemma 12. If σ is an ε̃-constrained equilibrium, for ε̃ ∈ E, then there exists a
negligible set H ∈ M(H) such that Ui(σ|ωt, at−1) ≥ Ui(σ

′
i, σ−i|ωt, at−1), for every

σ′
i ∈ Σi(ε̃), (ωt, at−1) ∈ H∅ \H.

The following lemma shows that a THPE is an SPE.

Lemma 13. Let σ∗ be a THPE. There exists a negligible set H ∈ M(H) such that
Ui(σ

∗|ωt, at−1) ≥ Ui(σ
′
i, σ

∗
−i|ωt, at−1), for every σ′

i ∈ Σi, (ωt, at−1) ∈ H∅ \H.

Proof. Let σ∗ be a THPE and suppose that there is a set B ⊆ H∅∩Ht non-negligible
such that Ui(σ∗|ωt, at−1) < Ui(σ

′
i, σ

∗
−i|ωt, at−1) for (ωt, at−1) ∈ B. We assume, without

loss, that for each i ∈ N there is τi ∈ N, ai(γt−1
i (ωt,(t−1), at−1), at−1

i ;σ∗
i ) = a

t−1,(τi)
i

for every (ωt, at−1) ∈ B, and the projection of B onto X t−1 is a singleton {at−1}.
Therefore, we obtain
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−
∫
B

Ui(σ
∗|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), σ∗) dµtω(ω
t|at−1)

+

∫
B

Ui(σ
′
i, σ

∗
−i|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), (σ′
i, σ

∗
−i)) dµ

t
ω(ω

t|at−1) := β > 0.

By the definition of THPE, Lemma 5, and Lemma 7,13 for ε̃ ∈ E, there is an ε̃-
constrained equilibrium σε and ε̃-constrained strategy σ′ε

i such that∣∣∣∣ ∫
B

Ui(σ
∗|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), σ∗) dµtω(ω
t|at−1)

−
∫
B

Ui(σ
ε|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), σε) dµtω(ω
t|at−1)

∣∣∣∣ < β/3,

and,∣∣∣∣ ∫
B

Ui(σ
′
i, σ

∗
−i|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), (σ′
i, σ

∗
−i)) dµ

t
ω(ω

t|at−1)

−
∫
B

Ui(σ
′ε
i , σ

∗
−i|ωt, at−1)Πj∈Npj(a

t−1|ωt,(t−1), at,(τj), (σ
′ε
i , σ

∗
−i)) dµ

t
ω(ω

t|at−1)

∣∣∣∣ < β/3.

Combining the last three expressions yields a contradiction with Lemma 12.

B.6 Stochastic Move Opportunities

Proof of Lemma 3. Let M be s.t. sup{|gi(ωt, at)| |(ωt, at) ∈ Ωt×X t, t ∈ N} < M .
For each t ∈ N, define ḡi(ωt, at) :=M if gi(ωt, at) ̸= 0 and ḡi(ωt, at) := 0, otherwise.

For i ∈ N , and (ωt, at) ∈ Ωt ×X t, |gi(ωt, at)| ≤ ḡi(ω
t, at). By Lemma 4, we write

|Ui(σ)| ≤
∞∑
t=1

sup
σ∈Σ

∣∣∣∣∣∣
∑
at∈Xt

∫
Ωt

gi(ω
t, at) · p(at|ωt, σ) dµtω(ωt|at,(t−1))

∣∣∣∣∣∣
≤

∞∑
t=1

sup
σ∈Σ

∑
at∈Xt

∫
Ωt

ḡi(ω
t, at) · p(at|ωt, σ) dµtω(ωt|at,(t−1))

=

∞∑
t=1

sup
σ∈Σ

∑
at∈Xt

∫
Ωt

1
{
(ωt,(t̃), at,(t̃)) /∈ H̄ t̃, t̃ ≤ t

}
·M · p(at|ωt, σ) dµtω(ωt|at,(t−1))

=

∞∑
t=1

sup
σ∈Σ

(
1−

t∑
t̃=1

P t̃(H̄ t̃|σ)
)
·M

≤
∞∑
t=1

∞∑
t̃=t+1

sup
σ∈Σ

P t̃(H̄ t̃|σ) ·M =M ·
∞∑
t̃=1

sup
σ∈Σ

(
(t̃− 1) · P t̃(H̄ t̃|σ)

)
,

13Notice that we can view the previous integral as the expected utility of a strategy in which each
player j puts weight 1 on actions in at−1 up to τj , and in which gi = 0 for t′ < t.
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where the second equality follows from the definition of P t(·|σ) and H̄τ ∩ H̄τ ′ = ∅
for τ ̸= τ ′, the third inequality from the fact that the game has finitely many periods
with probability 1,14 and the last equality is obtained by changing the order of the
summation.

B.7 Examples 2.1, 2.2, and 2.3

Consider the game of Examples 2.1, 2.2, and 2.3 adapted from Harris et al. (1995).
We first explain why the base game does not have any subgame perfect equilibrium.

Denote by β the probability that player B plays R. If β > 1/2, player A prefers to
play a < 0 as this would imply that c = d = L, maximizing the probability of a wrong
guess by B. Anticipating this, player B would profitably deviate to β < 1/2. The
same argument applies when β < 1/2. Consider the case β = 1/2. For every a ̸= 0,
there exists a′ ̸= 0 closer to zero, i.e., |a′| < |a|, that yields a higher payoff to player
A. Finally, the action a = 0 is optimal for player A if and only if players C and D

are perfectly coordinated, i.e., c = d = L or c = d = R, as a function of b. However,
this implies that B cannot be indifferent between L and R, as B’s payoffs from her
two actions never coincide when C plays pure actions. This shows that no subgame
perfect equilibrium exists. Consequently, no Markov perfect equilibrium exists either.

Next, we show that the strategy profile described in Example 2.3 is an SPE.
Restrict player A to randomize uniformly between the actions δ − ε and −δ + ε, for
ε ∈ [δ − 1, δ] such that aε := 1/2 · (δ − ε) + 1/2 · (δ + ε) ∈ ∆(A). It is immediate to
see that players B, C, and D cannot profitably deviate; we focus on player A’s best
response. Player A’s payoff is

−10 · P({c ̸= d}|aε)− 1
2
|δ − ε|2,

where P({c ̸= d}|aε) is the probability that C and D play different actions conditional

14This latter condition implies (1−∑t
t̃=1 P

t̃(H̄ t̃|σ)) =∑∞
t̃=t+1 P

t̃(H̄ t̃|σ).
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on aε, which equals15

P({c ̸= d}|aε) = ε · (2δ − ε)

2δ2

for ε > 0 and zero otherwise.
Clearly, ε < 0 cannot be optimal since, compared to ε = 0, it does not affect

P({c ̸= d}|aε) and increases 1
2
|δ−ε|2. Furthermore, it is easy to check that A’s payoff

is decreasing in ε for δ ∈ A, making it optimal to set ε = 0 and uniformly randomize
between δ and −δ.

We are left to check whether player A could profitably play actions different from
the ones that take the form of aε. This is not the case since for every mixed strategy
α ∈ ∆(A) and action ā ∈ supp(α) ∩ (−δ, δ) ̸= ∅, player A obtains a higher payoff by
assigning α(ā) > 0 weight to δ instead of ā.

Formally, let α ∈ ∆(A) be a mixed strategy. Clearly, if supp(α) ∩ [−δ, δ] = ∅
then α is not optimal. Assume that ā ∈ supp(α) ∩ (−δ, δ) ̸= ∅. By following steps
analogous to the ones displayed in footnote 15, one can show that the probability
that C and D play different actions given ā equals

P({c ̸= d}|ā) = δ2 − |ā|2
2δ2

.

Therefore, A’s payoff from playing action ā amounts at

UA(ā) = −10 · δ
2 − |ā|2
2δ2

− 1

2
|ā|2 < −1

2
|δ|2 = UA(δ)

where the inequality follows from first order conditions as δ ∈ A ⊆ [−1, 1].

B.8 Applications to Markov Games

Application 2. We are left to show that Markov information and Markov payoff are
satisfied. The former holds since the unobservable component of the current payoff-
relevant state, that is, each opponent’s private shock, is independent from past in-
formation conditional on the current payoff-relevant signal of each player. Therefore,

15Applying conditioning, it follows that

P({c ̸= d}|aε) = 1/2 ·
(
P({c ̸= d}|δ − ε) + P({c ̸= d}| − δ + ε)

)
= 1/2 ·

(
2 · P(si ≥ 0|δ − ε) · P(s−i < 0|δ − ε) + 2 · P(si ≥ 0| − δ + ε) · P(s−i < 0| − δ + ε)

)
=

(∫ 2δ−ε

0

1

2δ
dy

)
·
(∫ 0

−ε

1

2δ
dy

)
+

(∫ ε

0

1

2δ
dy

)
·
(∫ 0

−2δ+ε

1

2δ
dy

)
= ε · (2δ − ε)

2δ2

for every i ∈ {C,D}.

20



the current-payoff relevant signal is as informative as the private history to predict
the current payoff-relevant state. Markov payoff holds by the same argument and the
fact that flow payoffs depend only on the current action profile and the payoff-relevant
private signals.
Application 3. In asynchronous games, if the active player perfectly observes the
current payoff-relevant state, then both Markov information and payoff are satisfied.
Indeed, as private histories do not record inactive periods, the current payoff-relevant
signals coincide with the payoff-relevant state, satisfying Markov information. Markov
payoff follows by the fact that the payoff received during inactive periods equals zero.

Asynchronous revision games. Let Ω = ∪t∈N(X t × [0, T )) with T ∈ R+ ∪ {∞},
representing the history of action profiles and the timing of the current move. For
i ∈ N, assume ΩR = ∪t∈N(X t × [0, T )) and γRi (ω

R) = ωR for each ωR ∈ ΩR. For
ℓ ∈ N, hℓ ∈ Hℓ, γ ̸R

i (h
ℓ) = (t1, . . . , tℓ−1), that is, the previous moving times are part

of the payoff-irrelevant signals. The rest of the environment is as in games with
stochastic moves opportunities described in Section 5, with the additional assump-
tion that opportunities are drawn independently at exogenous Poisson rates. Payoff
boundedness and continuity are satisfied under standard restrictions concerning pay-
offs. For instance, payoff boundedness is satisfied by the hypotheses of Lemma 3.
MAC(a) holds across periods since timing of moves are drawn at Poisson rates, and
the history of actions profile is countable, while MAC(b) holds as there are finitely
many actions. Markov information and payoff hold since the active player perfectly
observes the current payoff-relevant state.

Dynamic cheap talk games. The sender observes the whole history of the game,
including the current exogenous state ω̂ ∈ Ω̂, and selects a message m ∈ M ; the
receiver, observing only the sender’s messages, implements an action a ∈ A; the
exogenous state transition µ : A → ∆(Ω̂) depends on the current action played by
the receiver; payoffs depend on the current state and receiver’s action, (ω̂, a) ∈ Ω̂×A.
We assume the sets M and A are finite to ensure that payoff boundedness, payoff
continuity, and MAC hold.

We can write the set of the states of the world as ΩR = Ω̂×M × A, incorporat-
ing the current message and previous actions played by the receiver. For i ∈ {s, r},
representing the sender and the receiver, respectively, the current payoff-relevant sig-
nals are: sRs (hs) = (ω̂tt, a

t−1
t−1) for hs = (ω̂t,mt−1, at−1) ∈ Hs; sRr (hr) = (at−1

t−1,m
t
t) for

hr = (at−1,mt) ∈ Hr. Markov information is satisfied as, before moving, the sender
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observes the current exogenous state and the previous receiver’s action, which consti-
tute the current payoff-relevant state, and the receiver’s inference about the current
exogenous state depends only on her previous actions played and the current message
received, which constitute her current payoff-relevant signals. Markov payoff holds
by the same argument.

B.9 Conditional ν-equilibrium

We discuss the relation between our notion of ε̃-constrained equilibrium and the one of
conditional ν-equilibrium, where, conditional on every set of private histories occurring
with positive probability, each player’s strategy is a best reply to the opponents’
strategies up to ν payoff. The following definition adapts Myerson and Reny’s (2020)
conditional ν-equilibrium to our setting.

Definition 5. Let ν > 0. A strategy profile σ ∈ Σ is a conditional ν-equilibrium
if, for every i ∈ N , ℓ ∈ N and Z ∈ M(Hℓ

i ) satisfying Pi(Z|σ) > 0,

Ui(σ|Z, σ) + ν ≥ Ui(σ
′
i, σ−i|Z, σ), ∀σ′

i ∈ Σi.

The following assumption requires that players’ expected payoffs decrease at a suf-
ficiently fast rate over periods. Let Ūi(σ̂|Z, σ) be calculated as Ui(σ̂|Z, σ) except that
gi replaced by |gi|, and let Ui,t(σ̂|Z, σ) =

∑
τ≤t
∫
Hτ Ui,t(σ̂|ωτ , aτ−1) dP τ

i (ω
τ , aτ−1|Z, σ).

Assumption (Regularity conditions). The following holds:
1. For every ε > 0, there is t(ε) ∈ N such that

sup{|∑∞
t=t(ε) Ui,t(σ̂|Z, σ)| |i ∈ N, Z ∈ M(Hℓ

i ), ℓ ∈ N, σ, σ̂ ∈ Σ} < ε,

and (1− ε)t(ε) → 1 as ε→ 0.

2. For every Z ∈ M(Hℓ
i ), ℓ ∈ N, supσ̂,σ∈Σ Ūi(σ̂|Z, σ) <∞.

3. For every σ̂ ∈ Σ, τ ∈ N, and aτ−1 ∈ Xτ−1, there is a transition probability
µτω,a(·, aτ−1|·, σ̂) : Hi → ∆(Ωτ ) such that

dµτω,a(ω
τ |aτ−1) · p(aτ−1|ωτ,(τ−1), σ̂) = dµτω,a(ω

τ , aτ−1|hi, σ̂)× dPi(hi|σ̂).

The regularity conditions (RC) hold in any game that has finitely many periods
or discounted payoffs. The following proposition shows that ε̃-constrained equilibria
are conditional ν-equilibria, relating the two concepts.
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Proposition 6. If payoff boundedness, payoff continuity, SAC, and RC hold, then,
for every ε > 0, ε̃ ∈ E(ε), and ε̃-constrained equilibrium σε, there exists ν(ε) > 0 such
that limε→0 ν(ε) = 0, and σε is a conditional ν(ε)-equilibrium.

Proof. The notation used in this proof is introduced in Supplemental Appendix B.5.

Lemma 14. Under payoff boundedness, payoff continuity, SAC, and RC, the follow-
ing statements hold:

1. For every ℓ ∈ N, Z ∈ M(Hℓ
i ) with Pi(Z|σ) > 0, and for every strategy σ̂ ∈ Σ,

there exists a strategy σ′
i such that

σ′
i ∈ argmax{Ui(σ̃i, σ̂−i|Z, σ̂i)|σ̃i ∈ Σi(σ̂i, Z)}. (15)

2. If (σi, σ−i) satisfies condition (12) with Σ̃i = Σi, then there is a pure strategy
ai : Hi → Xi such that Ui(σi, σ−i) = Ui(ai(·), σ−i).

3. Let ℓ ∈ N and Z ∈ M(Hℓ
i ). For every σ′

i ∈ Σi(σ̂i, Z) that satisfies condition
(15), there is a strategy σ′′

i ∈ Σi(σ̂i, Z) that is pure at every hi ∈ Hi(Z), such that
Ui(σ

′
i, σ̂−i|Z, σ̂i) = Ui(σ

′′
i , σ̂−i|Z, σ̂i).

Proof. Point 1. It follows from the fact that Σ̌i := {σ ∈ Σ̂|σi(·|sti, at−1
i ) =

σ̂i(·|sti, at−1
i ), (sti, a

t−1
i ) ∈ Sti × X̄ t

i , hi(s
t
i, a

t−1
i ) ∈ Hr

i , r < ℓ ≤ t}, the set of extended
strategies coinciding with σ̂i at all private histories of length less than ℓ, is closed
in the weak topology, and, therefore, it is compact. Under payoff boundedness and
continuity, SAC, and RC, by Lemma 7, Ui(·, σ̂−i) is continuous and, therefore, attains
its maximum, which we term σ′′

i , over Σ̌i.16 Now, σ′′
i extends a strategy that satisfies

the best response equation (12) with Σ̃i = Σ̌i and coincides with σ̂i in private histo-
ries of length less than ℓ. Therefore, (ˆ̂σi|Z , σ′′

i ) ∈ Σ̌i for every ˆ̂σi ∈ Σ̌i. By Lemma
11, σ′′

i satisfies condition (15). By the definition of the conditional expected payoff,
σ′
i = (σ′′

i |Z , σ̂i) satisfies condition (15) as well.
Point 3. Let σ′

i ∈ Σi(σ̂i, Z) satisfy (15) for some ℓ ∈ N ∪ {0}, and Z ∈ M(Hℓ
i ).

Define the correspondence ξ : Z ⇒ Xi as ξ(hi) = {ai ∈ Xi|σ′
i(ai|hi) > 0}. By Lemma

15, ξ has a measurable selection ai,ℓ(hi).
16See Corollary 2.35 in Aliprantis and Border (2006). Notice that we abuse notation slightly by

denoting strategies and their extensions by the same symbol.
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We show that Ui((ai,ℓ(·), σ′
i), σ̂−i|Z, σ̂) = Ui(σ

′
i, σ̂−i|Z, σ̂), where (ai,ℓ(·), σ′

i) denotes
the strategy that that coincides with ai,ℓ(hi) on every hi ∈ Z, and is equal to σ′

i,
otherwise. Suppose Ui((ai,ℓ(·), σ′

i), σ̂−i|Z, σ̂) < Ui(σ
′
i, σ̂−i|Z, σ̂).

For any strategy σ′′
i ∈ Σi(σ̂i, Z), we can write

Ui(σ
′′
i , σ̂−i|Z, σ̂) =

1

Pi(Z|σ̂)
∑
τ∈N,
t≥τ

∫
(hhi )

−1(Z)

∫
Hτ+1

Ui,t(σ
′′
i , σ̂−i|ωτ+1, aτ ) · pi(aτi |ωτ , σ′′i )

· p−i(aτ−i|ωτ , σ̂−i) dµτ+1
ω,a (ω

τ+1, aτ |ωτ , aτ−1)dµτω,a(ω
τ , aτ−1)

=
1

Pi(Z|σ̂)
∑
τ∈N,
t≥τ

∫
Z

∫
Hτ

∫
Hτ+1

Ui,t(σ
′′
i , σ̂−i|ωτ+1, aτ ) · σ′′i (aτi,τ |ωτ , aτ−1) · σ̂−i(aτ−i,τ |ωτ , aτ−1)

dµτ+1
ω,a (ω

τ+1, aτ |ωτ , aτ−1)dµτω,a(ω
τ , aτ−1|hi, σ̂)dPi(hi|σ̂),

where Ui,τ (σ′′
i , σ̂−i|ωτ+1, aτ ) := gi(ω

τ+1,(τ), aτ ) and the last equality follows from the
definition of Pi and RC.3. Therefore, Ui((ai,ℓ(·), σ′

i), σ̂−i|Z, σ̂) < Ui(σ
′
i, σ̂−i|Z, σ̂) im-

plies that there is Ẑ ∈ M(Hℓ
i ), Ẑ ⊆ Z with Pi(Ẑ) > 0 such that for every hi ∈ Ẑ

∑
τ∈N,
t≥τ

∫
Hτ+1

Ui,t(σ
′
i, σ̂−i|ωτ+1, aτ )·σ′i(aτi,τ |ωτ , aτ−1)·σ̂−i(aτ−i,τ |ωτ , aτ−1)·dµτ+1

ω,a (ω
τ+1, aτ |hi, σ̂)

>
∑
τ∈N,
t≥τ

∫
Hτ+1

Ui,t(σ̂i, σ̂−i|ωτ+1, aτ )·ai,ℓ(aτi,τ |ωτ , aτ−1)·σ̂−i(aτ−i,τ |ωτ , aτ−1)·dµτ+1
ω,a (ω

τ+1, aτ |hi, σ̂)

where ai,ℓ(aτi,τ |ωτ , aτ−1) = 1 if aτi,τ = ai,ℓ(h
h
i (ω

τ , aτ−1)), and dµτ+1
ω,a (ω

τ+1, aτ |hi, σ̂) =

dµτ+1
ω,a (ω

τ+1, aτ |ωτ , aτ−1)dµτω,a(ω
τ , aτ−1|hi, σ̂).

Now, notice that we can write σ′
i(a

τ
i,τ |ωτ , aτ−1) = σ′

i(a
τ
i,τ |ωτ , aτ−1)(1 −

ai,ℓ(a
τ
i,τ |ωτ , aτ−1))+σ′

i(a
τ
i,τ |ωτ , aτ−1)ai,ℓ(a

τ
i,τ |ωτ , aτ−1). Therefore, the previous inequal-

ity implies

Ui(σ
′
i, σ̂−i|Ẑ, σ̂) · Pi(Ẑ|σ̂) <

∑
τ∈N,
t≥τ

∫
Ẑ

∫
Hτ+1

Ui,t(σ
′
i, σ̂−i|ωτ+1, aτ ) · σ′i(aτi,τ |ωτ , aτ−1)

·
(
1− ai,ℓ(a

τ
i,τ |ωτ , aτ−1)

)
· σ̂−i(aτ−i,τ |ωτ , aτ−1) dµτ+1

ω,a (ω
τ+1, aτ |hi, σ̂)dPi(hi|σ̂)

+
∑
τ∈N,
t≥τ

∫
Ẑ

∫
Hτ+1

Ui,t(σ
′
i, σ̂−i|ωτ+1, aτ ) · σ′i(aτi,τ |ωτ , aτ−1) · σ′i(ai,ℓ(hhi (ωτ , aτ−1))|ωτ , aτ−1)

· σ̂−i(aτ−i,τ |ωτ , aτ−1) dµτ+1
ω,a (ω

τ+1, aτ |hi, σ̂)dPi(hi|σ̂).
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where we used Tonelli’s theorem to write the bound as a sum of two integrals.
However, this last inequality contradicts the optimality of σ′

i: the payoff on the
right hand side of the inequality is the payoff from the strategy that instead of putting
weight σ′

i(ai,ℓ(hi)|hi) > 0 on ai,ℓ(hi) randomizes according to σ′
i, for hi ∈ Ẑ. From

the inequality, this alternative strategy yields a higher expected conditional payoff.
Arguing recursively, by defining a new correspondence from Hi(Z) ∩ Hτ

i to Xi, for
each τ > ℓ, and finding a measurable selection ai,τ we can construct σ′′

i .
Point 2 can be shown by an analogous argument.

Let σ∗ ∈ Σ(ε̃). Let us show that, if ε̃ is an ε-tremble, then it is a conditional
ν-equilibrium for every ν > ν(ε), where ν : [0, 1] → (0,∞) satisfies limε→0 ν(ε) = 0.

Suppose there is ν > 0, Z ∈ M(Hi), and σ′
i ∈ Σ̂i, such that

Ui(σ
∗|Z, σ∗) + ν < Ui(σ

′
i, σ

∗
−i|Z, σ∗). (16)

Let σ̂′
i ∈ argmax{Ui(σ′

i, σ
∗
−i|Z, σ∗)|σ′

i ∈ Σi(σ
∗
i , Z)}. The strategy σ̂′

i exists by
Lemma 14.1, and by Lemma 14.3 it can be chosen so that it is pure in Hi(Z). Let
ai : Hi(Z) → Xi be the function that yields the action that is drawn with probability
1 by σ̂′

i(·|hi) for hi ∈ Hi(Z).
For each hi ∈ Hi(Z) define β(hi) :=

∑
ai∈Xi\ai(hi) ε̃(hi, ai). By Lemma 15, β is

M(Hi)-measurable. Define the strategy

σ̃i(ai|hi) :=


1− β(hi) if ai = ai(hi), hi ∈ Hi(Z)
ε̃(hi, ai) if ai ̸= ai(hi), hi ∈ Hi(Z)
σ∗
i (ai|hi) otherwise.

Notice that, σ̃i is ε̃-constrained.
Define H t(Z) = {(ωt, at) ∈ Ωt × X t|hhi (ωt, at,(t−1)) ∈ Hi(Z)} and α(ωt, at) =

Πτ≤|hhi(ωt,at,(t−1))|(1− β(hhi (ω
t,(τ), at,(τ−1)))) for (ωt, at) ∈ Ωt ×X t.

For σ ∈ Σ and σ′
i ∈ Σi(σi, Z), we can write

Ui,t(σ̃i, σ
∗
−i|Z, σ∗) · Pi(Z|σ∗) =

∫
Ht(Z)

gi(ω
t, at) · pi(ati|ωt, σ̃i)p−i(at−i|ωt, σ∗−i) dµtω,a(ωt, at)

=

∫
Ht(Z)

gi(ω
t, at) · pi(ati|ωt, σ̂′i) · p−i(at−i|ωt, σ∗−i) · α(ωt, at) dµtω,a(ωt, at−1)

+

∫
Ht(Z)

gi(ω
t, at) ·m(ε̃, ωt, at) · p−i(at−i|ωt, σ∗−i) dµtω,a(ωt, at),

where m(ε̃, ωt, at) > 0 is a function of ε̃ such that m(ε̃, ωt, at) < ε for every (ωt, at) ∈
Hi(Z) ∩Ht. Notice that Ui(σ′

i, σ−i|Z, σ) =
∑

t∈N Ui,t(σ
′
i, σ−i|Z, σ).
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Let t(ε) be as in RC.1, then

Ui(σ̃i, σ
∗
−i|Z, σ∗) ≥

∑
t≤t(ε)

Ui,t(σ̃i, σ
∗
−i|Z, σ∗)− ε≥

∑
t≤t(ε)

Ui,t(σ̂
′
i, σ

∗
−i|Z, σ∗)− ε

− 1

Pi(Z|σ∗)

( ∑
t≤t(ε)

∫
Ht(Z)

(1−α(ωt, at))|gi(ωt, at)| · p̃i(ati|ωt, σ̂′i) ·p−i(at−i|ωt, σ∗−i) dµtω,a(ωt, at)

∑
t≤t(ε)

∫
Ht(Z)

|gi(ωt, at)| ·m(ε̃, ωt, at) · p−i(at−i|ωt, σ∗−i) dµtω,a(ωt, at)
)

≥ Ui(σ̂
′
i, σ

∗
−i|Z, σ∗)− 2ε− (1− (1− ε)t(ε) + ε) sup

σ̂,σ∈Σ
Ūi(σ̂|Z, σ),

where in the first and third inequality we use RC.1, and in the third inequality we
use α(ωt, at) ≥ (1− ε)t(ε) for t ≤ t(ε).

Define ν(ε) := 2ε + (1 − (1 − ε)t(ε) + ε) supσ̂,σ∈Σ Ūi(σ̂|Z, σ). If ν > ν(ε) then
Ui(σ

∗|Z, σ∗)+ν < Ui(σ̂
′
i, σ

∗
−i|Z, σ∗)≤Ui(σ̃i, σ∗

−i|Z, σ∗)+ν(ε), which is implied by equa-
tion (16), contradicts that σ∗ is an ε̃-constrained equilibrium. By RC, limε→0 ν(ε) = 0.

C Supplemental Appendix — Mathematical Results

C.1 Carathéodory integrands and measurability of weak limits

Let (Y,M(Y ), β) be a measure space, Z be a countable metric space endowed with
the σ-algebra of all subsets of Z and the counting measure, and M(Y )0 be a sub
σ-algebra of M(Y ).

The following result shows that a correspondence from Y to Z, which may not be
closed-valued, has a measurable selection under a condition weaker than measurabil-
ity. It relies on the countability of the set Z.

Lemma 15. Let ϕ : Y ⇒ Z be a non-empty valued correspondence such that for
every z ∈ Z the set {y ∈ Y |z ∈ ϕ(y)} is M(Y )0-measurable. Then ϕ has a M(Y )0-
measurable selection, and for any M(Y )0×M(Z)-measurable, real valued function ĝ,∑

z∈ϕ(y) ĝ(y, z) is M(Y )0-measurable.

Proof. Let (zj)j∈N be an enumeration of the set Z. Define the function

mj(y) := 1{zj /∈ ϕ(y)} − 1/j.

Then, the function m̄(y) := infj∈N mj(y) is strictly negative (ϕ is non-empty valued),
finite for each y, and M(Y )0-measurable. It yields 1/j for the smallest j such that
zj ∈ ϕ(y).
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The selection z(y) = z|1/m̄(y)| is M(Y )0-measurable. In fact, for a measurable set
Ẑ ∈ M(Z), we can write Ẑ = (znj

)nj∈N for some subsequence (nj)j∈N of N. Then
z−1(Ẑ) = {y ∈ Y | |1/m̄(y)| ∈ (nj)j∈N} is in M(Y )0 since all countable subsets of R

are measurable.
Let m̂k(y) =

∑k
j=1 ĝ(y, zj) ·1{zj ∈ ϕ(y)}, then m̂k(y) is measurable and, therefore,

limk→∞ m̂k(y) =
∑

z∈ϕ(y) ĝ(y, z) is M(Y )0-measurable.

The following corollary is a consequence of Proposition 5.

Corollary 2. Let φ ∈ CI(Y × Z,M(Y ), β) and let φ̂ = E(φ|M(Y )0 ⊗ M(Z))

denote the conditional expectation of φ with respect to M(Y )0 ⊗M(Z). Then there
is a version of φ̂ ∈ CI(Y × Z,M(Y )0, β).

The following example shows that continuity in the strong total variation norm is
stronger than continuity in the total variation norm.

Example 4. Let β̂ be a the uniform distribution over Y = (0, 1), and define Z :=

{z(n,k)|z(n,k) =
(
1/n, k/n2

)
, k, n ∈ N, k ∈ [1, n − 1]} ∪ (0, 0). Let φ(y, (0, 0)) = 1 for

every y ∈ Y , and

φ(y, z(n,k)) =


0 if y ∈ [k − 1/n, k/n]
2 if y ∈ (k/n, (k + 1)/n]
1 otherwise.

Define ξ(Ŷ |z) =
∫
Ŷ
φ(y, z) dβ̂(y) for each Ŷ ∈ M(Y ).

Now take a sequence zm → (0, 0). We can write zm = z(nm,km) with km/nm → 0.
We have

sup
π∈π(Y )

∑
Ỹ ∈π

∫
Ỹ

|φ(y, zm)− φ(y, (0, 0))| dβ̂(y) ≤ 2/nm,

and, hence, ξ(·|z) is continuous in z in the total variation norm. Now, consider the y
dependent sequence zn(y) = z(n,k(y)) with k(y) = ⌈y · n⌉. Then for each n ∈ N, y ∈
Y , |z(n,k(y)) − (0, 0)| < 2/n, while |φ(y, z(n,k(y))) − φ(y, (0, 0))| = 1, and, therefore,
|| (ξ − ξ(0,0))|B((0,0),1/n)||SV ≥ 1. This shows that ξ(·|z) is not continuous in z in the
strong total variation norm. ◀

Let Z and Ẑ be countable sets endowed with the σ-algebra of all of their sub-
sets and the counting measure. Let Ty : Y → Ŷ and Tz : Z → Ẑ be measur-
able functions, and (Y,M(Y ), β) and (Ŷ ,M(Ŷ ), β̂ := β ◦ T−1

y ) be measure spaces.17

17The measure β ◦ T−1
y is defined by β ◦ T−1

y (B̂) = β(T−1
y (B̂)) for each B̂ ∈ M(Ŷ ).

27



We say that a net of measurable functions (fλ)λ∈Λ ⊆ RY×Z converges to f if
Iϕ(f

λ) :=
∫
Y

∑
z∈Z ϕ(y, z)f

λ(y, z) dy converges to I(f) for every ϕ ∈ CI(Y × Z, β).
The convergence for functions in RŶ×Ẑ is defined analogously.

Lemma 16. Let M(Y × Z)0 = σ{(Ty, Tz)−1(B̂) ∩ B̃|B̂ ∈ M(Ŷ × Ẑ)}, for a set
B̃ ∈ M(Y ×Z). Suppose that (fλ)λ∈Λ is a net of functions each of which is measurable
with respect to M(Y × Z)0 and has support in B̃. If (fλ)λ∈Λ converges to f , then f

is measurable with respect to M(Y × Z)0 and has support in B̃.

Proof. Let T = (Ty, Tz). By Theorem 4.41 in Aliprantis and Border (2006), we can
write fλ(y, z) = f̂λ(T (y, z)), where f̂λ is a M(Ŷ × Ẑ)-measurable function for each
λ ∈ Λ. Let f̂ be the limit of a subnet of (f̂λ)λ∈Λ. We show that f̂(T (y, z)) = f(y, z)

for each y ∈ Y , establishing the desired conclusion by the same theorem.
Suppose not, then there is a test function ψ ∈ CI(Y × Z, β) such that Iψ(f) ̸=

Iψ(f̂ ◦ T ). Let ψ̄ be the measurable function such that for every B ∈ M(Y × Z)0,∫
Y

∑
z∈Z ψ̄(y, z)1{(y, z) ∈ B} dβ(y) =

∫
Y

∑
z∈Z ψ(y, z)1{(y, z) ∈ B} dβ(y) for every

B ∈ M(Y × Z|T ). Since the measure µ̂(B) =
∫
Y

∑
z∈Z 1{(y, z) ∈ B} dβ(y) for

B ∈ M(Y × Z|T ) is σ-finite, ψ̄ exists by the Radon-Nikodym theorem.
By Theorem 4.41 in Aliprantis and Border (2006), there is a measurable function

ψ̂ : Ŷ × Ẑ → R such that ψ̂ = ψ̄ ◦ T , and, by Theorem 13.46, for every measurable
g : Y × Z → R with support in T (B̃)

Îψ̂(g) :=

∫
Ŷ

∑
z∈Ẑ

ψ̂(y, z) · g(ŷ, ẑ) dβ̂(ŷ) =
∫
Y

∑
z∈Z

ψ(y, z) · g ◦ T (y, z) dβ(ŷ) (17)

By Corollary 2, ψ̂(y, z) is continuous in Ẑ, for ŷ in a β̂-full-measure subset of Ŷ .18

This contradicts limλ Iψ(f
λ) ̸= Iψ(f̂ ◦ T ) as we have limλ Iψ(f

λ) = limλ Iψ(f̂
λ ◦ T ) =

limλ Îψ̂(f̂
λ) = Îψ̂(f̂) = Iψ(f̂ ◦ T ), where the third equality follows by the definition of

f̂ , since ψ̂ ∈ CI(Ŷ × Z, β̂), and the second and last equalities follow by (17).

C.2 A special case of dominated convergence for nets

The following results show that results analogous to Fatou’s lemma and Lebesgue’s
dominated convergence theorem hold not just for sequences but also for nets under
the counting measure. The proofs of Lemma 17 and Proposition 8 are close to the
standard ones—except that one replaces sequences by nets—and use Proposition 7.

18By Corollary 2, ψ̄ is continuous in Z almost surely in Y . This implies the continuity of ψ̂i.
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We include the proof of these Lemmas for completion. Proposition 7 does not hold
when one replaces the sum by a measure over an uncountable set.

Proposition 7 (Monotone convergence). Let (xα,k)α∈A,k∈N ⊆ R+ be a net, with
A a directed set, be such that (i) α ≥ α′ implies xα,k ≥ xα′,k for all k ∈ N, and (ii)
there is M such that

∑∞
k=1 xα,k < M for all α ∈ A then xk = limα xα,k exists for each

k ∈ N and limα

∑∞
k=1 xα,k =

∑∞
k=1 xk.

Proof. The net xα,k has a limit, xk, for each k, as it is non-decreasing and bounded
by (ii).

Let B = {(α, n)|α ∈ A, n ∈ N} be a directed set with (α, n) ≥ (α′, n′) if and
only if α ≥ α′ and n ≥ n′. And define yα,n :=

∑n
k=1 xα,k. The net (yb)b∈B is non-

decreasing and bounded and, therefore, has a limit—its supremum in R—which we
denote s. That is, for each ε > 0 there is ᾱ and n̄ such that α ≥ ᾱ and n ≥ n̄

implies
∣∣∑n

k=1 xα,k − s
∣∣ < ε. For each α ≥ ᾱ, the sequence (yα,n)n∈N is monotone

non-decreasing and bounded. Therefore, it has a limit and by the continuity of the
absolute value we obtain,

∣∣∑∞
k=1 xα,k − s

∣∣ < ε. This shows that limα

∑∞
k=1 xα,k = s.

For each fixed n ≥ n̄, there is α̂(n) ≥ ᾱ such that
∣∣∑n

k=1 xα̂(n),k −
∑n

k=1 xk
∣∣ <

ε. Therefore, for each n ≥ n̄ there is α̂(n) such that
∣∣∑n

k=1 xk − s
∣∣ ≤∣∣∑n

k=1 xα̂(n),k −
∑n

k=1 xk
∣∣+∣∣∑n

k=1 xα̂(n),k − s
∣∣ < 2ε. This shows that

∑∞
k=1 xk = s.

Lemma 17 (Fatou’s Lemma). Let (xα,k)α∈A,k∈N ⊆ R+ be a net, with A a directed
set, and supᾱ infα≥ᾱ

(∑∞
k=1 xα,k

)
< ∞. Then, for each k ∈ N, xk := supᾱ infα≥ᾱ xα,k

exists and
∑∞

k=1 supᾱ infα≥ᾱ xα,k ≤ supᾱ infα≥ᾱ
∑∞

k=1 xα,k.

Proof. Define yk,α := inf{xk,α̂|α̂ ≥ α}. Since ≥ is transitive yk,α is non-decreasing in α.
Then, (

∑∞
k=1 yk,α)α∈A is a non-decreasing and bounded net, and, therefore, has a limit.

Furthermore, for k ∈ N, α ∈ A we have yk,α ≤ xk,α. Therefore, limα

∑∞
k=1 yk,α ≤

supᾱ infα≥ᾱ
∑∞

k=1 xk,α <∞. To conclude note that by Proposition 7 the left hand side
of the previous expression is equal to

∑∞
k=1 limα yk,α =

∑∞
k=1 supᾱ infα≥ᾱ xα,k.

Proposition 8 (Dominated convergence). If xk = limα xk,α for each k ∈ N, and
there is (yk)k∈N, with |∑∞

k=1 yk| < ∞, such that |xα,k| ≤ yk, then limα

∑∞
k=1 |xα,k −

xk| = 0.

Proof. Notice that |xα,k − xk| ≤ |xα,k| + |xk| ≤ 2yk. Therefore, by Lemma 17
inf ᾱ supα≥ᾱ

∑∞
k=1 |xα,k − xk| ≤ ∑∞

k=1 inf ᾱ supα≥ᾱ |xα,k − xk| = 0. This shows that
limα

∑∞
k=1 |xk,α − xk| = 0.
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