
Absolute and Relative Ambiguity Attitudes

Francesco Fabbri* Giulio Principi† Lorenzo Stanca‡

September 17, 2024

Abstract

We represent preferences that exhibit absolute or relative attitudes towards ambi-

guity without assuming convexity of preferences. Our analysis is motivated by the

recent experimental evidence by Baillon and Placido (2019) indicating that ambigu-

ity becomes more tolerable as individuals’ welfare improves. Decreasing absolute

ambiguity aversion is characterized by constant superadditive certainty equivalents

and admits an act-dependent variational representation (Maccheroni et al., 2006).

Decreasing relative ambiguity aversion relates to positive superhomogeneity and

admits an act-dependent confidence preference representation (Chateauneuf and

Faro, 2009). We apply our characterizations to retrieve a classic risk sharing result on

the efficiency of trade and subjective beliefs of the individuals (Rigotti et al., 2008).
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1 Introduction

The seminal work of Ellsberg (1961) originated a vast theoretical literature on ambiguity

that successfully addressed several decision puzzles in the context of uncertainty. In

parallel, a growing literature has employed these decision-making models to study a wide

range of economic applications, e.g., risk sharing (Rigotti et al., 2008; Ghirardato and

Siniscalchi, 2018a); moral hazard (Miao and Rivera, 2016); portfolio choice (Maccheroni

et al., 2013). However, many popular ambiguity models fail to comply with the experimen-

tal evidence concerning how attitudes towards ambiguity change when individual welfare

changes (Baillon and Placido, 2019). This paper attempts to fill this gap by providing

general preference representations for absolute and relative ambiguity attitudes.

Ambiguity models often assume independence notions which limit their ability to

capture the whole spectrum of ambiguity attitudes (see Figure 1). For instance, the class

of invariant biseparable preferences (Ghirardato et al., 2004; red area in Figure 1), which

includes Choquet expected utility (Schmeidler, 1989) and maxmin expected utility (Gilboa

and Schmeidler, 1989), satisfies certainty independence that is equivalent to constant

absolute and relative ambiguity aversion. Similarly, variational preferences (Maccheroni

et al., 2006; green area) satisfy weak certainty independence implying constant absolute

ambiguity aversion, while confidence preferences (Chateauneuf and Faro, 2009; purple

area) satisfy worst independence that implies constant relative ambiguity aversion.

We depart from standard models of ambiguity aversion along two dimensions. First,

following Baillon and Placido (2019), we weaken the independence axioms previously

mentioned to capture decreasing absolute ambiguity aversion and decreasing relative

ambiguity aversion1 (gray area in Figure 1). According to the former, ambiguity becomes

more tolerable when the individual is better off in absolute terms, while to the latter,

ambiguity becomes more tolerable when the relative size of the ambiguity the individual

faces increases.2 Second, our analysis does not rely on any form of convexity of prefer-

ences. This allows us to avoid criticisms related to the Machina paradoxes (Machina,

2009; Baillon et al., 2011).

1We borrow the axiom of decreasing absolute ambiguity aversion from Xue (2020). Ghirardato and
Siniscalchi proposed a similar axiom in their work “Compensanted Absolute Ambiguity Attitudes,” a version
of which was presented at RUD and D-TEA conferences in 2015.

2As a byproduct, our analysis provides representation results for all the kinds of changing ambiguity
attitudes, including increasing absolute and increasing relative ambiguity aversion.
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Figure 1: MBA preferences and changing ambiguity attitudes

MBA preferences. Within the standard Anscombe and Aumann (1963) setup, we assume

MBA preferences as primitives (Cerreia-Vioglio et al., 2011a). On top of completeness

and transitivity, these preferences satisfy minimal requirements of rationality, such as

monotonicity, risk independence, and continuity conditions.3 Notably, we do not impose

any unboundedness condition for our results. Unboundedness is not merely technical in

the context of changing uncertainty attitudes, as it excludes standard utility functions

that are bounded below, e.g., constant relative risk averse (CRRA) utilities.

As a baseline for our analysis, we characterize MBA preferences (Lemma 1) in terms

of certainty equivalent functionals representable as maxima of quasiconcave functions.4

Denote by F the set of all acts f : S → X that map the set of states of the world S to set

of consequences X . Lemma 1 shows that the certainty equivalent I associated with act

f ∈F can be written as

I (u( f )) = max
G∈G

inf
p∈△(S)

G

(∫
u( f )dp, p

)
(1)

3The acronym MBA refers to Monotone, Bernoulli, and Archimedean.
4This result generalizes Theorem 4 in Chandrasekher et al. (2022).
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where u is an affine utility function, G is a set of quasiconvex functions and monotone in

the first argument, and p ∈△(S) is a probability measure over the state space S.

We highlight two feasible interpretations for the representation (1). The first interpre-

tation, advanced by Chandrasekher et al. (2022) and Xia (2020), rationalizes the decision

problem as an intrapersonal game between two conflicting “selves”: Optimism, playing

the best possible aggregator in G , and Pessimism, selecting the worst possible belief in

△(S). Alternatively, following Castagnoli et al. (2022), a second interpretation relates

to the axiomatic treatment of risk mitigation by Drèze (1990). In this setting, decision

makers are confident that choosing an action induces a probability measure over the

state space without error. However, if we remove such confidence, we can relate the

decision maker’s action as inducing an aggregator in G and concerns for misspecification

to the infimum among all possible probabilistic models in △(S).

Decreasing absolute ambiguity aversion. We enrich our baseline (Lemma 1) by consid-

ering preferences satisfying decreasing absolute ambiguity aversion. This axiom states

that, if a mixture involving an act f ∈F and a constant act x ∈ X , written α f + (1−α)x

for α ∈ (0,1), is preferred to αz + (1−α)x, where z ∈ X , then this preference is preserved if

we replace x in both acts with a better constant act y ∈ X .5

Theorem 1, which constitutes our main representation of decreasing absolute ambi-

guity aversion, formalizes the link between this property and constant superadditivity.

Relating to the representation (1), Theorem 1 further imposes that each aggregator G ∈G

is constant superadditive in the first argument, that is,

G

(∫
u( f )+u(x)dp, p

)
≥G

(∫
u( f )dp, p

)
+u(x)

for every f ∈F , x ∈ X with u(x) ≥ 0, and p ∈△(S). This result conforms to our intuition.

Under decreasing absolute ambiguity aversion, u( f )+u(x) is evaluated with a lower

degree of ambiguity aversion than u( f ). Therefore, combining an uncertain prospect f

with a positive, certain one, x, yields a higher utility than when the two prospects are

considered separately, resulting in constant superadditivity.

Since decreasing absolute ambiguity aversion weakens weak certainty independence

(see section 3.1), in Proposition 1 we provide a second characterization of this property

which follows an act-dependent variational representation (Maccheroni et al., 2006). In

5As customary, we identify constant acts with their consequence in X .
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particular, each act f ∈F is evaluated as

I (u( f )) = max
c∈C f

min
p∈△(S)

{∫
u( f )dp + c(p)

}
where the set C f depends on the act f and collects lower semicontinuous and convex am-

biguity costs, c : △(S) → (−∞,∞]. Decreasing absolute ambiguity aversion is captured by

the fact that the set of the ambiguity costs enlarges as the decision maker evaluates more

favorable acts, i.e., u(g ) ≤ u( f ) implies Cg ⊆C f , for f , g ∈F . In a dual-self perspective,

as the prospect considered improves, the optimistic self is better off as she can choose an

ambiguity cost from a larger set; in the risk mitigation interpretation, the cost related to

misspecification concerns is attenuated.

We introduce two models to illustrate our representations. Example 1 adds risk miti-

gation concerns to second-order expected utility (Grant et al., 2009; Neilson, 2010) and

shows it satisfies the representation of Theorem 1; Example 2 relates to the representa-

tion of Proposition 1 by introducing an act-dependent version of multiplier preferences

(Hansen and Sargent, 2001) where the decision maker has access to an outside option.

Decreasing relative ambiguity aversion. This notion captures the idea that ambiguity

aversion decreases as the proportion of the certainty part of the act decreases. To define

it, we assume the existence of a worst consequence x∗ ∈ X , i.e., u(x∗) ≤ u(y) for all y ∈ X ,

which we normalize to u(x∗) = 0. This axiom states that if, for all acts f ∈F , y ∈ X , and

mixing weight α ∈ (0,1), α f + (1−α)x∗ is preferred to αy + (1−α)x∗, then this preference

is preserved if we replace α in both acts with a larger mixing weight β≥α.

Our axiom of decreasing relative ambiguity aversion is novel; it modifies the one

proposed by Xue (2020) by restricting to mixtures involving the worst consequence only.

To check the soundness of this axiom, we show that, in the context of the smooth ambi-

guity model (Klibanoff et al., 2005), and assuming ambiguity aversion, it is equivalent to

requiring that the function governing ambiguity attitudes satisfies decreasing relative risk

aversion (DRRA), i.e., the Arrow-Pratt coefficient of relative risk aversion is decreasing.6

Theorem 2, our main representation of decreasing relative ambiguity aversion, con-

nects this property to positive superhomogeneity. Relating to the representation (1),

Theorem 2 imposes that each aggregator G ∈G is positively superhomogeneous in the

6See Remark 2 for further details. The analog result for decreasing absolute ambiguity aversion in the
context of the smooth model is shown by Xue (2020) in Proposition 7.
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first argument, namely,

G

(∫
u(α f + (1−α)x∗)dp, p

)
≤αG

(∫
u( f )dp, p

)
for every α ∈ (0,1), f ∈F , and p ∈△(S). When considering α f + (1−α)x∗, as α increases,

the proportion of the certainty part of the act decreases. Therefore, under decreasing

relative ambiguity aversion, α f + (1−α)x∗ is evaluated with a higher degree of ambiguity

aversion than f , resulting in positive superhomogeneity.

Since decreasing relative ambiguity aversion is a weakening of worst independence

(see section 3.1), Proposition 2 provides an alternative characterization of this property

in the form of an act-dependent confidence preference representation (Chateauneuf and

Faro, 2009). In particular, each act f ∈F is evaluated as follows

I (u( f )) = max
d∈D f

min
p∈△(S)

∫
S u( f )dp

d(p)

where the set D f depends on the act f and collects upper semicontinuous and quasi-

concave confidence functions, d : △(S) → [0,∞]. As for absolute attitudes, decreasing

relative ambiguity aversion is captured by the set of confidence functions enlarging as

the decision maker evaluates more favorable acts, i.e., u(g ) ≤ u( f ) implies Dg ⊆ D f , for

f , g ∈F . This feature implies positive superhomogeneity conforming to Theorem 2.

Two models illustrate our representations of decreasing relative ambiguity aversion.

Analogously to Example 1, Example 3 connects second-order expected utility with risk

mitigation to Theorem 2; Example 4 relates to Proposition 2 by introducing an act-

dependent model of entropic-confidence preferences with outside option.

Risk sharing application. We apply our characterizations of absolute and relative am-

biguity attitudes to investigate whether, in financial markets, it is efficient for agents

displaying general ambiguity preferences to engage in speculative betting. In an exchange

economy with a single consumption good and no aggregate uncertainty, subjective ex-

pected utility agents that are risk averse introduce individual uncertainty into the final

allocation— meaning, they engage in betting— if and only if their beliefs differ (Milgrom

and Stokey, 1982). This result has been extended, first by Billot et al. (2000) in the context

of maxmin expect utility, and later by Rigotti et al. (2008) for general convex preferences,

by showing that agents will bet if and only if they do not share any beliefs, i.e., their sets of
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subjective beliefs, properly defined, do not intersect. Finally, Ghirardato and Siniscalchi

(2018a) generalize this result to non-convex preferences, proposing a condition called

strict pseudoconcavity at certainty which, loosely speaking, requires the indifference

curves at a consumption point to lie strictly above the tangent line.

Proposition 3 connects these risk sharing results to our analysis of changing ambiguity

attitudes. In particular, it shows that by combining our characterizations of decreasing

absolute ambiguity aversion and increasing relative ambiguity aversion, plus some ad-

ditional regularity requirements, we obtain strict pseudoconcavity at certainty.7 The

inefficiency of betting is then implied by Ghirardato and Siniscalchi (2018a).

In contrast, in Example 5, we argue that decreasing relative ambiguity aversion might

prompt agents to bet even if they share the same beliefs. The key intuition is that Theorem

2 links decreasing relative ambiguity aversion to a representation that is “convex at 0,”

leading agents to prefer uncertainty over full insurance.

Related literature. We contribute directly to the decision-theoretic literature investi-

gating changing ambiguity attitudes resulting from utility shifts. Grant and Polak (2013)

focus on the case of constant absolute ambiguity aversion and show that this property ad-

mits a mean dispersion representation. We instead consider non-constant absolute and

relative attitudes. To this end, we borrow the axioms of decreasing absolute ambiguity

aversion and decreasing relative ambiguity aversion, the latter with some modifications,

from the analysis of Xue (2020)8. Like us, also Xue studies changing ambiguity attitudes

resulting from utility shifts, but our analyses differ on several dimensions. First, our main

representation for absolute ambiguity attitudes (Theorem 1) takes a more general form

than the one of Theorem 3 in Xue as it does not rely on the assumptions of ambiguity

aversion and unboundedness. In addition, we enrich our study of absolute ambiguity at-

titudes by retrieving an act-dependent variational representation (Proposition 1). Finally,

to the best of our knowledge, we are first in providing general representation results for

relative ambiguity attitudes (Theorem 2 and Proposition 2).

A different approach is pioneered by Cherbonnier and Gollier (2015) and Cerreia-

Vioglio et al. (2022), which consider wealth effects, instead of utility shifts. In this frame-

work, Cerreia-Vioglio et al. (2022) show that wealth-classifiable preferences, that is, ambi-

guity preferences that are either increasing, constant, or decreasing to wealth changes

7The representation of increasing relative ambiguity aversion follows that of Theorem 2 for decreasing
relative ambiguity aversion by replacing positively superhomogeneity with positively subhomogeneity.

8See also Chambers et al. (2014) for the related notion of absolute uncertainty attitudes.
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in absolute or relative terms, must necessarily display constant absolute risk aversion.

Therefore, one can view studies on utility shifts as a way to overcome this restrictive

assumption on risk preferences. Employing a different notion of comparative ambiguity

attitudes, Wang (2019) studies wealth effects without assumptions on risk preferences.

Our work is motivated by the recent experimental evidence of Baillon and Placido

(2019). At the aggregate level, their findings support decreasing absolute and decreasing

relative ambiguity aversion. Roughly 40% of the subjects of their experiments display

constant absolute ambiguity aversion and another 40% display decreasing absolute

ambiguity aversion; almost half of the subjects satisfy decreasing relative ambiguity

aversion. Furthermore, their analysis suggests that constant absolute ambiguity aversion

would not make accurate predictions for most subjects unless we accept errors of up to

10%. This evidence highlights the inadequacy of popular decision-making models to

capture experimentally corroborated ambiguity attitudes. See section 3.1 for a discussion.

A growing literature studies the consequences of decreasing absolute ambiguity

aversion in economic applications. Some of these applications interpret this property

as a form of ambiguity prudence and use it to explain precautionary savings (Berger,

2014; Osaki and Schlesinger, 2014) and self-protective behavior (Berger, 2016). Other

applications study market selection. Guerdjikova and Sciubba (2015) show that decision

makers displaying decreasing absolute ambiguity aversion survive in markets populated

by expected utility agents. In a framework that allows for a broad class of recursive

preferences, Beker and Chen (2023) show that under decreasing absolute ambiguity

aversion, every full-support belief can survive if there is sufficiently high uncertainty. As

for relative attitudes, in the context of uncertainty sharing economies, Hara et al. (2024)

show that if the individual consumers display constant relative ambiguity aversion, then

the representative consumer exhibits decreasing relative ambiguity aversion.

We borrow technical insights from the literature on risk measures. Some of our results

are inspired by Han et al. (2022) that provide representations as minima of constant

subadditive and quasiconvex functions. Similar results for positively superhomogeneous

functionals appear in: Castagnoli et al. (2022), which characterize star-shaped monetary,

i.e., constant additive, risk measures;9 Laeven et al. (2023), which provide a representation

of star-shaped functionals in terms of convex and lower semicontinuous functionals.

Our results distinguish from these since, without assuming unboundedness, we have to

employ extension techniques and envelope continuity results.

9Cerreia-Vioglio et al. (2024) retrieve analogous results with additional subdifferential properties.
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2 Mathematical preliminaries

We consider the Anscombe and Aumann (1963) setup composed of a nonempty set S

of states of the world, endowed with an algebra Σ of subsets of S called events, and a

nonempty convex set X of consequences. Denote by △(S) the set of finitely additive

probability measures over S.

The decision maker has preferences over the set F of all (simple) acts, i.e.,Σ-measurable

functions f : S → X such that f (S) is a finite set. For all x ∈ X , we identify x ∈F as the

constant act equal to x, and, as a result, X as a subset of F . For all f , g ∈F , and α ∈ [0,1],

relying on the linear structure of X , we define convex combinations of acts as

(α f + (1−α)g ) : s 7→α f (s)+ (1−α)g (s) ∈ X .

We denote by ≿ a binary relation over F , and by ≻ and ∼ its asymmetric and sym-

metric parts, respectively. For all f ∈F , denote by x f ∈ X a certainty equivalent of f , i.e.,

x f ∼ f . A function V : F →R is a utility representation for ≿ if, for all f , g ∈F ,

f ≿ g ⇐⇒ V ( f ) ≥V (g ).

Whenever the decision maker’s preferences over consequences admit a utility representa-

tion, comparisons between acts can be expressed in utility levels. To formalize this, we

introduce B0(Σ,K ), the set of Σ-measurable real-valued bounded simple functions whose

images are included in K , interpreted as the set of utility levels, for some K ⊆R. To ease

notation, let B0(Σ) = B0(Σ,R). Endow these sets with the supnorm ∥·∥∞.

As customary in decision theory under ambiguity, we study the properties of “certainty

equivalent functionals.” To this end, we introduce some properties discussed in the

upcoming sections. Fix a convex set K ⊆ R. A functional I : B0(Σ,K ) → R̄ is normalized

if I (k) = k for all k ∈ K ; monotone if ϕ ≥ ψ implies I (ϕ) ≥ I (ψ), for all ϕ,ψ ∈ B0(Σ,K ),

and strictly monotone if in addition ϕ ̸= ψ implies I (ϕ) > I (ψ); quasiconcave if for all

ϕ,ψ ∈ B0(Σ,K ), and α ∈ [0,1], we have

I (αϕ+ (1−α)ψ) ≥ min
{

I (ϕ), I (ψ)
}

;

quasiconvex if −I : B0(Σ,K ) → R̄ is quasiconcave.

The notions of constant super and subadditivity are particularly relevant for our
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analysis of absolute ambiguity attitudes. Specifically, I is constant superadditive if, for all

ϕ ∈ B0(Σ,K ), and k ≥ 0, such that ϕ+k ∈ B0(Σ,K ), we have

I (ϕ+k) ≥ I (ϕ)+k. (2)

Analogously, I is constant subadditive if equation (2) holds with the reversed inequality;

constant additive if it is both constant superadditive and constant subadditive. Constant

superadditivity and subadditivity are strict when they hold with the strict inequality for

every ϕ ̸= 0 and k > 0.

For relative ambiguity attitudes, we introduce the concepts of positive super and

subhomogeneity. In particular, I is positively superhomogeneous if

I (γϕ) ≤ γI (ϕ) (3)

for all γ ∈ (0,1), and ϕ ∈ B0(Σ,K ) with γϕ ∈ B0(Σ,K ); positive subhomogeneity is defined

by reversing the inequality (3); positive homogeneity holds if I is both positively super

and subhomogeneous. Positive superhomogeneity and subhomogeneity are strict when

they hold with the strict inequality for every ϕ ̸= 0.

Our representations satisfy additional regularity requirements. A familyΥ of functions

H : B0(Σ,K ) → R̄ is regular if: (i) ϕ 7→ maxH∈ΥH(ϕ) is well-defined and continuous, (ii) if

K is lower open,10 then each element ofΥ is lower semicontinuous, and (iii) if K is either

upper open or a bounded interval, then each element of Υ is upper semicontinuous.

Moreover, a family G of functions G :R×△(S) → R̄ is linearly continuous if

ϕ 7→ max
G∈G

inf
p∈△(S)

G

(∫
ϕdp, p

)
is continuous.

3 Monotone, Bernoulli, Archimedean preferences

We now introduce the axioms, maintained throughout our analysis, characterizing MBA

preferences. Let a binary relation ≿ on F represent the decision maker’s preferences.

10A subset K of R is lower open (resp. upper open) if, for all k ∈ K , there exists ε> 0 such that [k−ε,k] ⊆ K
(resp. [k,k +ε] ⊆ K ).
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AXIOM (weak order). ≿ is complete and transitive.

AXIOM (risk independence). If x, y, z ∈ X , and α ∈ (0,1),

x ∼ y =⇒ αx + (1−α)z ∼αy + (1−α)z.

AXIOM (archimedean continuity). If f , g ,h ∈F and f ≻ g ≻ h, then there existα,β ∈ [0,1]

such that

α f + (1−α)h ≻ g ≻β f + (1−β)h.

AXIOM (monotonicity). If f , g ∈F and f (s)≿ g (s) for each s ∈ S, then f ≿ g .

A binary relation ≿ on F is an MBA preference, or simply MBA, if it satisfies weak

order, risk independence, archimedean continuity, and monotonicity.

Lemma 1 below provides a representation of MBA preferences which constitutes

the starting point of our analysis and connects existing results in the literature. Cerreia-

Vioglio et al. (2011a) show that a binary relation ≿ is MBA if and only if there exist: (i) an

affine function u : X →R, and (ii) a monotone, normalized, and continuous functional

I : B0(Σ,u(X )) →R such that I ◦u represents ≿. We sharpen their representation showing

that the certainty equivalent I can be taken as the maximum over a set of monotone

and quasiconcave functions. A similar result appears also in Chandrasekher et al. (2022)

(Theorem 4), but limited to finite state spaces. We extend their result to arbitrary state

spaces and establish additional regularity conditions.

LEMMA 1. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is an MBA preference relation.

(ii) There exist an affine function u : X →R, and a regular setΨ of monotone, quasicon-

cave functions H : B0(Σ,u(X )) →R such that

f ≿ g ⇐⇒ max
H∈Ψ

H(u( f )) ≥ max
H∈Ψ

H(u(g )) (4)

for all f , g ∈F and maxH∈ΨH(u(x)) = u(x) for all x ∈ X .

We highlight two feasible interpretations for our representation of MBA preferences.

Using quasiconcave duality results by Cerreia-Vioglio et al. (2011b), the utility representa-
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tion in (4) can be written as

V ( f ) = max
G∈G

inf
p∈△(S)

G

(∫
u( f )dp, p

)
(5)

where G is a linearly continuous family of quasiconvex functions monotone in the first

argument. The first interpretation, by Chandrasekher et al. (2022) and Xia (2020), ratio-

nalizes the decision problem as an intrapersonal game between two conflicting “selves”:

Optimism, playing the best possible aggregator in G , and Pessimism, selecting the worst

possible belief in △(S). Alternatively, following Castagnoli et al. (2022), a second inter-

pretation relates to the axiomatic treatment of risk mitigation by Drèze (1990). In Drèze,

decision makers are confident that choosing an action induces a probability measure

over the state space without error. By allowing for less confident decision makers, we

interpret the decision maker’s action as inducing an aggregator in G and concerns for

misspecification as the infimum among all possible probabilistic models in △(S).

In the following sections, we enrich our representation of MBA preferences by study-

ing the role of absolute and relative ambiguity attitudes. To this end, we first discuss how

other ambiguity models relate to these properties.

3.1 Independence notions and ambiguity attitudes

Popular models based on MBA preferences are neutral towards absolute and/or relative

changes in utility levels. This neutrality is implied by distinct notions of independence,

stronger than risk independence. To discuss this aspect further, we formally introduce

constant absolute ambiguity aversion (Grant and Polak, 2013), and constant relative

ambiguity aversion.

AXIOM (constant absolute ambiguity aversion). For all f ∈F , x, y, z ∈ X , and α ∈ (0,1),

α f + (1−α)x ≿αz + (1−α)x =⇒ α f + (1−α)y ≿αz + (1−α)y.

To define relative ambiguity attitudes, we assume that the binary relation ≿ on F

admits a worst consequence. That is, there exists x∗ ∈ X such that y ≿ x∗ for all y ∈ X .

AXIOM (constant relative ambiguity aversion). For all f ∈F , x, y ∈ X , and α,β ∈ (0,1),

α f + (1−α)x∗ ≿αy + (1−α)x∗ =⇒ β f + (1−β)x∗ ≿βy + (1−β)x∗.
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Both these axioms impose a form of “independence.” Constant absolute ambiguity

aversion implies independence in absolute changes in utility levels, meaning the decision

maker’s ambiguity aversion is invariant towards absolute utility shifts. To see this, notice

that the implication in the axiom does not depend on the preference ranking of the con-

stant acts x and y . Similarly, constant relative ambiguity aversion requires independence

towards relative changes in utility levels. This follows since the implication in the axiom

does not depend on whether the weight α is larger or smaller than the weight β.

Below, we summarize the independence notions of popular MBA preference models,

highlighting their relation to constant absolute and constant relative ambiguity attitudes.

- Choquet (Schmeidler, 1989), maxmin (Gilboa and Schmeidler, 1989), α-maxmin (Ghi-

rardato et al., 2004), and dual-self maxmin (Chandrasekher et al., 2022).

All these models imply certainty independence, which requires that preferences are

independent of mixtures with constant acts. Formally, a binary relation≿ on F satisfies

certainty independence if, for all f , g ∈F , x ∈ X , and α ∈ [0,1],

f ≿ g ⇐⇒ α f + (1−α)x ≿αg + (1−α)x.

It can be seen how certainty independence implies both constant absolute ambiguity

aversion and constant relative ambiguity aversion.

- Variational (Maccheroni et al., 2006), and vector expected utility (Siniscalchi, 2009).

These preferences satisfy a weaker version of certainty independence, named weak cer-

tainty independence. A binary relation ≿ on F satisfies weak certainty independence

if, for all f , g ∈F , x, y ∈ X , and α ∈ (0,1),

α f + (1−α)x ≿αg + (1−α)x =⇒ α f + (1−α)y ≿αg + (1−α)y.

It is immediate to verify that this notion implies constant absolute ambiguity aversion.

Moreover, it allows for dependence of ambiguity aversion on relative utility shifts.

Indeed, this notion requires that preferences are independent of mixtures with constant

acts while keeping the relative mixing weights, α and 1−α, constant.11

11Variational preferences are represented by a concave and normalized certainty equivalent and hence
satisfy increasing relative ambiguity aversion. This contrasts with the maxmin model, where the certainty
independence axiom implies positive homogeneity and, in turn, constant relative ambiguity aversion.
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- Confidence preferences (Chateauneuf and Faro, 2009).

This model satisfies worst independence, imposing independence to mixtures involving

the worst consequence. Formally, a binary relation ≿ on F satisfies worst indepen-

dence if, for all f , g ∈F , and α ∈ (0,1),

f ∼ g =⇒ α f + (1−α)x∗ ∼αg + (1−α)x∗.

For MBA preferences, worst independence is equivalent to constant relative ambiguity

aversion, as both lead to positively homogeneous certainty equivalents. Furthermore,

specularly to weak certainty independence, this axiom allows for the dependence of

ambiguity aversion on absolute utility shifts by requiring independence only with re-

spect to relative mixing weights, keeping fixed the worst consequence on all mixtures.12

In our analysis, we weaken the axioms of weak certainty independence and worst inde-

pendence to allow for changing absolute and relative ambiguity attitudes, respectively.

In doing so, we provide representations that are more general than the ones implied

by these axioms: Proposition 1 connects decreasing absolute ambiguity aversion to an

act-dependent variational representation, while Proposition 2 links decreasing relative

ambiguity aversion to an act-dependent confidence preference representation.13

4 Absolute ambiguity attitudes

In this section, we characterize preferences that display less aversion to ambiguity as the

decision maker’s baseline utility increases.

AXIOM (decreasing absolute ambiguity aversion). For all f ∈F , x, y, z ∈ X , and α ∈ (0,1),

if y ≿ x, then

α f + (1−α)x ≿αz + (1−α)x =⇒ α f + (1−α)y ≿αz + (1−α)y.

Contrary to the constant absolute case, decreasing absolute ambiguity aversion allows

the decision maker’s ambiguity aversion to depend on absolute changes in utility levels.

12Since such preferences are represented by a superlinear and normalized functional, they exhibit
decreasing absolute ambiguity aversion.

13By weakening certainty independence, Hill (2013) provides an axiomatization of an act-dependent
version of maxmin expected utility to capture the role of confidence in decisions.
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In particular, the axiom says that if an ambiguous act α f + (1−α)x is preferred over a

constant act αz + (1−α)x, then such a ranking is preserved if the certainty part improves

from x to y on both sides. This axiom captures the idea that ambiguity becomes more

tolerable when the decision maker is better off in absolute terms.

The following theorem provides our main representation of decreasing absolute

ambiguity aversion. It connects this property to the representation (5) of Lemma 1 by

imposing constant superadditivity of all aggregators.

THEOREM 1. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA and exhibits decreasing absolute ambiguity aversion.

(ii) There exist an affine function u : X → R and a linearly continuous family G of

monotone, constant superadditive in the first argument, and quasiconvex functions

G :R×△(S) → R̄ such that

f ≿ g ⇐⇒ max
G∈G

inf
p∈△(S)

G

(∫
u( f )dp, p

)
≥ max

G∈G
inf

p∈△(S)
G

(∫
u(g )dp, p

)
for all f , g ∈F and maxG∈G infp∈△(S) G

(∫
u(x)dp, p

)= u(x) for all x ∈ X .

The two interpretations provided for Lemma 1 apply also for Theorem 1. The main

distinction is the fact that now the representation captures decreasing absolute ambiguity

aversion through the constant superadditivity of each aggregator G(·, p) for all p ∈△(S).

Interpreting again the decision problem as an intrapersonal game between two selves

(Chandrasekher et al., 2022), this means that the pessimistic self exhibits decreasing

absolute ambiguity aversion irrespective of the move of the optimistic self, that is, the

choice of the aggregator. Instead, in a risk mitigation framework (Drèze, 1990), it is as if

the decision maker exhibits decreasing absolute ambiguity aversion independently of

the chosen action. Both interpretations have a common ground: decreasing absolute

ambiguity aversion ascribes to the aggregators only.

The following example introduces a generalization of second-order expected utility

(Grant et al., 2009; Neilson, 2010), which allows for multiple probability distributions

rather than a single one. We show that whenever the function governing ambiguity atti-

tudes satisfies decreasing absolute risk aversion (DARA), i.e., the Arrow-Pratt coefficient of

absolute risk aversion is decreasing, then the model can be written as the representation

of Theorem 1, hence displaying decreasing absolute ambiguity aversion.
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EXAMPLE 1 (second-order expected utility with risk mitigation; DARA). We model a

decision maker with a finite set of probabilities Q ⊆△σ(S),14 where (S,Σ) is a measur-

able space, an affine utility over consequences satisfying u(X ) = [0,∞), and ambiguity

attitudes are represented by a continuous, strictly increasing, and concave function

φ : [0,∞) → R. For every act f ∈ F , the second-order expected utility given q ∈ Q is

defined as

Iq (u( f )) =φ−1
(∫

φ(u( f ))dq

)
.

To aggregate models in Q, the decision maker uses the following criterion

V ( f ) = max
q∈Q

Iq (u( f )).

Clearly, if Q is a singleton, these preferences collapse to second-order expected utility. In

general, inspired by Drèze (1990), we interpret these preferences as reflecting a two-step

procedure: first, the choice of an ambiguous alternative f ∈F , and second the choice

of an action q ∈Q which partially controls the probability over the states to mitigate the

uncertainty involving f . For this reason, we refer to these preferences as second-order

expected utility with risk mitigation.

Through the properties of our representation of Theorem 1, we investigate which

assumptions onφ imply decreasing absolute ambiguity aversion. As each Iq is continuous

and Q is finite, V is also continuous; as each Iq is monotone and normalized, V is

monotone and normalized. By Lemma 11 and 12 in Appendix B.3, we have that, if φ is

twice differentiable and satisfies DARA, i.e., t 7→ −φ′′(t)/φ′(t) is decreasing, then each

Iq is constant superadditive.15 As a consequence, such preferences exhibit decreasing

absolute ambiguity aversion and admit a representation as in Theorem 1, with

Gq (t , p) = sup

{
Iq (u( f )) : f ∈F and

∫
u( f )dp ≤ t

}
for all (t , p) ∈R×△(S). The constant superadditivity of each Iq implies that each Gq (·, p)

is constant superadditive as well. Î

As decreasing absolute ambiguity aversion weakens weak certainty independence

(see section 3.1), we investigate whether these preferences admit a more general varia-

tional representation. The following proposition shows that this is the case by relating

14We denote by △σ(S) the set of countably additive probability measures over S.
15The function φ : t 7→p

t satisfies all the listed hypotheses.
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decreasing absolute ambiguity aversion to an act-dependent variational representa-

tion.16 In their standard formulation (Maccheroni et al., 2006), variational preferences

are characterized by a single ambiguity cost c : △(S) → [0,∞] capturing the level of am-

biguity aversion. Due to changing ambiguity attitudes and the absence of convexity of

preferences, the set of ambiguity costs varies with the acts.

PROPOSITION 1. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA and exhibits decreasing absolute ambiguity aversion.

(ii) There exist an affine function u : X → R, and, for all f ∈ F , a family C f of lower

semicontinuous and convex functions c : △(S) → (−∞,∞] such that

f ≿ g ⇐⇒ max
c∈C f

min
p∈△(S)

{∫
S

u( f )dp + c(p)

}
≥ max

c∈Cg
min

p∈△(S)

{∫
S

u(g )dp + c(p)

}
,

where max
c∈Cx

min
p∈△(S)

c(p) = 0 for all x ∈ X , and Cg ⊆C f for all f , g ∈F with u( f ) ≥ u(g ).

This result generalizes the dual-self variational representation in Chandrasekher et al.

(2022) (Theorem 3), which differs from ours as it is act-independent, a consequence of

constant absolute ambiguity aversion. Instead, due to decreasing absolute ambiguity

aversion, the set of ambiguity costs varies with the act, enlarging as the utility levels

increase. In the intrapersonal game interpretation, this maps to the optimistic self being

allowed to select a more favorable cost, while in the risk mitigation one, to an attenuation

of the costs related to misspecification concerns. In general, the result highlights how the

higher the utility levels, the lower the ambiguity costs the decision maker faces.

In Proposition 1 point (ii), each cost function belonging to C f takes values in (−∞,∞].

This is done in light of the following remark, which provides a nice construction of these

costs. Alternatively, each cost function could be taken with values in [0,∞] and the

construction would rely, following Maccheroni et al. (2006) and Cerreia-Vioglio et al.

(2014), on the more standard Fenchel-Moreau representation.

REMARK 1. As observed by Han et al. (2022) (Proposition A.3), the family of ambiguity

costs in the act-dependent variational representation can be written in a specific form.

In particular, by inspecting the proof of their Proposition A.3, it follows that

I (u( f )) = max
g :u( f )≥u(g )

min
p∈△(S)

{∫
S

u( f )dp +u(xg )−
∫

S
u(g )dp

}
(6)

16Proposition 1 extends Proposition A.3 in Han et al. (2022) by removing unboundedness conditions.
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for all f ∈F . This representation, which is equivalent to that of Proposition 1, has the

advantage of making explicit the following structure of ambiguity costs

C f =
{

p 7→ u(xg )−
∫

S
u(g )dp : g ∈F , ∀s ∈ S, f (s)≿ g (s)

}
.

c i
g : p 7→ u(xi

g )−
∫

S
u(g )dp

Notice that, even considering the more explicit form of this representation, in the absence

of uniqueness-related results, many other families of ambiguity indexes may exist. Î

The following example relates to the representation of decreasing absolute ambi-

guity aversion of Proposition 1 by considering an act-dependent version of multiplier

preferences (Hansen and Sargent, 2001).

EXAMPLE 2 (multiplier preferences with outside option). We model a decision maker

that can mitigate the uncertainty induced by any act f ∈F by exerting some effort that

affects the probability distribution over a finite set of states S, where Σ= 2S . In particular,

exerting effort to mitigate the uncertainty of f is valuable if it can induce a model, from

the finite set Q ⊆△(S), which makes f preferred over an outside option yielding a utility

level equal to θ ∈ [0,∞). If no model in Q justifies the choice of f over the outside

option, then exerting effort is not valuable, and the decision maker evaluates f using as

benchmark qu, the uniform distribution over S. Formally, each act f is associated with a

set of probability distributions

C f =
{

q ∈Q :
∫

u( f )dq ≥ θ
}
∪{

qu
}

.

Notice that, for f , g ∈F , u( f ) ≤ u(g ) implies C f ⊆Cg .

The decision maker is concerned with model misspecification and displays multiplier

preferences

V ( f ) = max
q∈C f

min
p∈△(S)

{∫
u( f )dp +λR(p∥q)

}
(7)

where λ > 0, and R(·∥·) denotes the relative entropy which can be defined, for every

p, q ∈△(S), as

R(p∥q) =
∫

log
(dp

dq

)
dp

if p ≪ q ; +∞ otherwise. These preferences satisfy decreasing absolute ambiguity aver-
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sion; they are a special case of the act-dependent variational model of Proposition 1.

We interpret the representation (7) in light of the risk mitigation story.17 Two forces

contribute to the evaluation of the act f . On the one hand, the decision maker’s optimal

action induces the most favorable model among the ones justifying f over the outside

option. This model, q ∈C f , determines the benchmark probability for the relative entropy

R(·∥q). On the other hand, due to concerns for misspecification, the decision maker

employs the worst model p ∈△(S) to compute the expected utility, trading-off a higher

value of the relative entropy R(p∥q) the more p diverges from q . Î

5 Relative ambiguity attitudes

We now study the impact of a relative change in the proportion of the certainty part of an

act. In particular, we characterize preferences displaying decreasing relative ambiguity

aversion. Recall that x∗ ∈ X denotes the worst consequence, that is, y ≿ x∗ for all y ∈ X .

AXIOM (decreasing relative ambiguity aversion). For all f ∈F , y ∈ X , and α,β ∈ (0,1), if

α≤β, then

α f + (1−α)x∗ ≿αy + (1−α)x∗ =⇒ β f + (1−β)x∗ ≿βy + (1−β)x∗.

This axiom says that if an act α f + (1−α)x∗ is preferred to a constant act αy + (1−
α)x∗, where both acts can be expressed as mixtures with the worst consequence, then

such a ranking is preserved after decreasing the proportion associated with the worst

consequence in both acts. This axiom modifies the one proposed by Xue (2020) by

restricting to mixtures involving the worst consequence only.

We are ready to state our main representation for decreasing relative ambiguity aver-

sion. It mirrors the representation of decreasing absolute ambiguity aversion in Theorem

1, the main distinctions being: (i) constant superadditivity of the aggregators is replaced

by positive superhomogeneity, and (ii) we require the existence of a worst consequence.

THEOREM 2. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA, admits a worst consequence, and exhibits decreasing relative ambiguity

aversion.
17The conflicting selves narrative would apply as well with obvious adjustments. We employ it later to

interpret the model of Example 4 concerning decreasing relative ambiguity aversion.
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(ii) There exist an affine function u : X →Rwith minu(X ) = 0 and a linearly continuous

family G of monotone, positively superhomogeneous in the first argument, and

quasiconvex functions G :R×△(S) → R̄ such that

f ≿ g ⇐⇒ max
G∈G

inf
p∈△(S)

G

(∫
u( f )dp, p

)
≥ max

G∈G
inf

p∈△(S)
G

(∫
u(g )dp, p

)
for all f , g ∈F and maxG∈G infp∈△(S) G

(∫
u(x)dp, p

)= u(x) for all x ∈ X .

The two interpretations provided for Lemma 1 and Theorem 1—the dual-self and

the risk mitigation interpretation—apply to Theorem 2 as well. In particular, through

the positive superhomogeneity of each G(·, p), for all p ∈△(S), we can view decreasing

relative ambiguity aversion as a property of the aggregators only.

Analogous to Example 1, the following connects the representation of Theorem 2 to

second-order expected utility with risk mitigation when the function governing ambiguity

attitudes satisfies decreasing relative risk aversion (DRRA), i.e., the Arrow-Pratt coefficient

of relative risk aversion is decreasing.

EXAMPLE 3 (second-order expected utility with risk mitigation; DRRA). Consider again

the preferences introduced in Example 1. In particular, for f ∈F ,

V ( f ) = max
q∈Q

Iq (u( f )) = max
q∈Q

φ−1
(∫

φ(u( f ))dq

)
where Q ⊆△σ(S) is a finite set of models, u(X ) = [0,∞), and φ is a continuous, strictly

increasing and concave function. By Lemma 11 and 12 in Appendix B.3, if φ is also twice

differentiable and DRRA, i.e., t 7→ −tφ′′(t )/φ′(t ) is decreasing, then each Iq is positively

superhomogeneous.18 As a result, these preferences satisfy decreasing relative ambiguity

aversion and can be represented following Theorem 2, where each Gq , defined as in

Example 1, is positively superhomogeneous. Î

REMARK 2. We show that, under ambiguity aversion, our formulation of decreasing

relative ambiguity aversion is equivalent to the smooth ambiguity functional (Klibanoff

et al., 2005) satisfying DRRA. Formally, for f ∈F , the smooth certainty equivalent is

V ( f ) =φ−1
(∫

φ
(∫

u( f )dp
)
dµ

)
18For instance, the function φ : t 7→ t +p

t satisfies all the listed hypotheses.
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where we assume that u(X ) = [1,∞), µ is a countably additive probability measure over

△σ(S), (S,Σ) is a measurable space and Σ is non-trivial, and φ : [1,∞) → R is contin-

uous, strictly increasing, and concave, capturing ambiguity aversion. Proposition 19

in Appendix B.4 shows that, if φ is twice differentiable, then smooth ambiguity prefer-

ences satisfy decreasing relative ambiguity aversion for all countably additive probability

measures µ over △σ(S) if and only if φ is DRRA. Î

Next, we provide an alternative representation for decreasing relative ambiguity

aversion relating this property, which is weaker than worst independence (see section 3.1),

to an act-dependent confidence preference representation. In their standard formulation

(Chateauneuf and Faro, 2009), confidence preferences are characterized by a confidence

function d : △(S) → [0,∞] associating each probability model to its relative confidence

level. In our case, as in Proposition 1, due to changing ambiguity attitudes and the lack of

convexity, the set of confidence functions varies for each act.

PROPOSITION 2. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA, admits a worst consequence, and exhibits decreasing relative ambiguity

aversion.

(ii) There exist an affine function u : X →R, with minu(X ) = 0, and, for all f ∈F , a set

D f of upper semicontinuous and quasiconcave d : △(S) → [0,∞] such that

f ≿ g ⇐⇒ max
d∈D f

min
p∈△(S)

∫
S u( f )dp

d(p)
≥ max

d∈Dg

min
p∈△(S)

∫
S u(g )dp

d(p)

where maxd∈Dx minp∈△(S) u(x)/d(p) = u(x) for all x ∈ X , and D f ⊆ Dg for all f , g ∈
F with u( f ) ≤ u(g ).

This result generalizes the existing representations for homothetic preferences men-

tioned above and mirrors the act-dependent variational model of Proposition 1. Notice,

positive superhomogeneity of the aggregators (Theorem 2) is captured by the set of con-

fidence functions enlarging as the utility levels increase. Therefore, the decision maker

displays a higher degree of relative confidence for higher utility levels.

The following example relates to the representation of decreasing relative ambiguity

aversion of Proposition 2 by considering act-dependent entropic-confidence preferences

with outside option.
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EXAMPLE 4 (confidence preferences with outside option). Following Example 2, we model

a decision maker that can mitigate the uncertainty of each act f ∈F by exerting effort

whenever it is valuable to do so. Formally, to each act f ∈F is associated the set

D f =
{

q ∈Q :
∫

u( f )dq ≥ θ
}
∪{

qu
}

where Q ⊆△(S) is a finite set of models, S is finite, Σ= 2S , θ ∈ [0,∞), and qu denotes the

uniform distribution over S. Notice that, for f , g ∈F , u( f ) ≤ u(g ) implies D f ⊆ Dg .

We define act-dependent entropic-confidence preferences as follows

V ( f ) = max
q∈D f

min
p∈△(S)

∫
u( f )dp

exp(−R(p∥q))
(8)

where, as before, R(·∥·) denotes the relative entropy. These preferences satisfy decreasing

relative ambiguity aversion; they are a special case of the act-dependent confidence

preferences of Proposition 2.

We interpret the representation (8) by following the narrative of the intrapersonal

game between two conflicting selves. To evaluate the act f , Optimism selects the most

favorable model among the ones justifying f over the outside option. This choice, q ∈ D f ,

determines the benchmark probability to compute the relative entropy R(·∥q). As a result,

Pessimism faces a trade-off: the choice of the pessimistic model p ∈△(S) determines

the expected utility of the agent, but, at the same time, the more it diverges from q , the

higher the value of the relative entropy R(p∥q), and of the ratio in (8). Î

6 A risk sharing application

In this section, we apply our representations of changing ambiguity attitudes to an ex-

change economy with a single consumption good and no aggregate uncertainty. We want

to investigate whether it is efficient for agents displaying general ambiguity preferences

to take bets. We show that, under regularity requirements, the joint combination of

decreasing absolute ambiguity aversion and increasing relative ambiguity aversion, when

at least one of them is non-constant, implies strict pseudoconcavity at certainty. Under

this condition, as shown by Ghirardato and Siniscalchi (2018a), betting is inefficient if
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and only if the agents share at least one supporting probability,19 i.e., the agents’ beliefs

that support the consumption bundle have a non-empty intersection.

Non-constant changing ambiguity attitudes. We introduce non-constant absolute

and relative ambiguity attitudes, which follow from the notions already discussed with

obvious adjustments.

AXIOM (non-constant decreasing absolute ambiguity aversion). For all f ∈F , x, y, z ∈ X ,

and α ∈ (0,1), if y ≻ x, then

α f + (1−α)x ≿αz + (1−α)x =⇒ α f + (1−α)y ≻αz + (1−α)y.

Recall, if it exists, x∗ ∈ X denotes the worst consequence, that is, y ≿ x∗ for all y ∈ X .

AXIOM (non-constant increasing relative ambiguity aversion). For all f ∈F , y ∈ X , and

α,β ∈ (0,1), if α>β, then

α f + (1−α)x∗ ≿αy + (1−α)x∗ =⇒ β f + (1−β)x∗ ≻βy + (1−β)x∗.

Lemma 13 in Appendix B.5 shows that, under MBA preferences, decreasing absolute

ambiguity aversion and increasing relative ambiguity aversion hold simultaneously if

and only if the certainty equivalent functional satisfies both constant superadditivity and

positively subhomogeneity.20 Furthermore, whenever either one of the two behavioral

properties holds non-constantly, the corresponding functional property holds strict.

The economy. We model an exchange economy populated by finitely many agents

N := {1, . . . , N }. Let the state space S be finite as well. Each agent, indexed by i ∈ N , has a

utility function Vi :RS+ →R and is dispensed with an endowment ωi ∈RS+. For simplicity,

we abstract away from risk attitudes and restrict the attention to the case of risk neutrality,

i.e., Vi (x) = x for every x ∈ R+. Finally, as in Ghirardato and Siniscalchi (2018a), this

economy features no aggregate uncertainty, i.e.,
∑

i ωi = ω̄ for some ω̄> 0.

An allocation is a vector ( f1, . . . , fN ) ∈RN×S+ where each fi is the consumption bundle

19We adopt the terminology of Ghirardato and Siniscalchi (2018a), although Rigotti et al. (2008) first
introduced this notion under the name of subjective beliefs.

20In the context of recursive ambiguity models, Lemma 1 in Strzalecki (2013) shows that constant
superadditive and positively subhomogeneous functionals represent preferences for early resolution of
uncertainty.
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assigned to agent i ∈ N contingent on each state. We say that an allocation is feasible if∑
i fi = ω̄; interior if, for all i ∈ N , fi > 0; full-insurance if, for all i ∈ N , fi = xi for some

xi ∈R+; Pareto-efficient if it is feasible, and there is no other feasible allocation (g1, . . . , gN )

such that Vi (gi ) ≥ Vi ( fi ) for all i ∈ N , and V j (g j ) > V j ( f j ) for some j ∈ N ; a competitive

equilibrium with transfers if it is feasible, and there exist prices q ∈ RS++ and transfers

(Ti )i∈N ∈RN+ with
∑

i Ti = 0 such that fi ∈ argmax{g∈RS+:q·g≤q ·ωi+Ti } Vi (g ) for all i ∈ N .

Supporting probabilities and strict pseudoconcavity. For every i ∈ N , the set of sup-

porting probabilities at an allocation f ∈RS+ is

πi ( f ) =
{

p ∈△(S) : ∀g ∈RS
+,Vi (g ) ≥Vi ( f ) =⇒ p · g ≥ p · f

}
.

Notice that, πi ( f ) can be interpreted as the set of (normalized) prices such that any

bundle weakly preferred to f is at least as costly as f .

Following Ghirardato and Siniscalchi (2018a), a function V :RS+ →R is strictly pseudo-

concave at f ∈RS++ if, for all g ̸= f ,

V (g ) ≥V ( f ) =⇒∀q ∈ ∂V ( f ), q · (g − f ) > 0,

where ∂V ( f ) denotes the Clarke subdifferential of V at f (Clarke, 1983).21 Furthermore,

V is strict pseudoconcavity at certainty if it is strictly pseudoconcave at x for all x ∈R++.

Changing ambiguity attitudes and risk sharing. As in Ghirardato and Siniscalchi

(2018a), we say that V :RS+ →R is nice if it is locally Lipschitz, strictly monotone and, for

every x ∈R++, continuously differentiable in a neighborhood of x with ∇V (x) ̸= 0, where

∇V (x) denotes the gradient of V at x. We are ready to state the main result of this section.

PROPOSITION 3. If V :RS+ →R is normalized, nice, and satisfies constant superadditivity

and positive subhomogeneity, with at least one being strict, then V satisfies strict pseudo-

concavity at certainty.

21For n ≥ 1, an open subset B ⊆Rn , and a function V : B →R, the Clarke subdifferential of V at b ∈ B is

∂V (b) = cl conv

{
lim

k→∞
d k : ∃(bk ) → b such that d k =∇V (bk ),∀k

}
,

where cl conv denotes the closure of the convex hull, and ∇V (bk ) the gradient of V at bk .
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The proof follows from observing that the joint combination of constant superaddi-

tivity and positive subhomogeneity implies that V satisfies “concavity at certainty,” that

is, for every f ∈F , x ∈R++, and α ∈ (0,1),

V (α f + (1−α)x) ≥αV ( f )+ (1−α)V (x).

By applying Proposition 3 and Theorem 3 in Ghirardato and Siniscalchi (2018a), we

retrieve the following equivalences, which generalize the risk sharing result of Rigotti

et al. (2008). Thus, we establish a connection between risk sharing and our general

representations of changing ambiguity attitudes.

COROLLARY 1. For each i ∈ N , assume Vi is nice, and satisfies constant superadditivity

and positive subhomogeneity, with at least one being strict. The following are equivalent

(i) Every Pareto-efficient allocation is a full-insurance allocation.

(ii) Every feasible, full-insurance allocation is Pareto-efficient.

(iii) For every feasible, full-insurance allocation (x1, . . . , xN ),
⋂

i∈N πi (xi ) ̸= ;.

Furthermore, under the above equivalent conditions, every interior, feasible, full-insurance

allocation is a competitive equilibrium with transfers.

In contrast to this result, decreasing relative ambiguity aversion appears at odds with

risk sharing. Intuitively, by Theorem 2, this property implies that preferences are “convex

at zero,” that is, for every f ∈F and α ∈ (0,1),

V (α f + (1−α)0) ≤αV ( f )+ (1−α)V (0).

The following example considers an economy where each Vi is nice but satisfies positive

superhomogeneity as well as constant additivity. We construct a full-insurance allocation

that is not Pareto-efficient. This suggests that agents displaying decreasing relative

ambiguity aversion may be willing to bet even if they share the same beliefs.

EXAMPLE 5. Let S = {s1, s2}, N = {1,2}, and ω1 =ω2 = (1/2,1/2). Define V1 =V2 :=V as

V ( f ) = max
H∈Ψ

H( f ),
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whereΨ= {H1, H2, H3}, and

H1( f ) = 1/9 · f (s1)+8/9 · f (s2)−0.1

H2( f ) = 1

10
log

(
1

2

(
e

10
(

1
4 f (s1)+ 3

4 f (s2)
))
+ 1

2

(
e

10
(

3
4 f (s1)+ 1

4 f (s2)
)))

H3( f ) = 8/9 · f (s1)+1/9 · f (s2)−0.1.

Since V1 = V2 the agents share the same beliefs at the initial full-insurance allocation.

However, we show that such allocation is not Pareto-efficient which implies that Corollary

1 does not hold under non-constant decreasing relative ambiguity aversion. To this end,

notice that, V is monotone, normalized, and continuous. Therefore, by Proposition 1 in

Cerreia-Vioglio et al. (2011a), V represents MBA preferences. Furthermore, since each

H ∈Ψ is positively superhomogeneous, V is positively superhomogeneous as well, and,

by Theorem 2, decreasing relative ambiguity aversion holds. Finally, V is also nice.

The initial full-insurance endowment is not Pareto-efficient. Indeed, the feasible

allocation ((0.4,0.6), (0.6,0.4)) achieves a strictly higher level of utility for both agents:

H1((1/2,1/2)) = 0.4, H2((1/2,1/2)) = 0.5, H3((1/2,1/2)) = 0.4,

while

H1((0.4,0.6)) = H3((0.6,0.4)) = 0.47

H2((0.4,0.6)) = H2((0.6,0.4)) = 0.512

H3((0.4,0.6)) = H1((0.6,0.4)) = 0.32,

which implies that V1((0.4,0.6)) =V2((0.6,0.4)) = 0.512 >V ((1/2,1/2)) = 0.5. Î

Appendix

The Appendix is organized as follows. In Appendix A, we present the proofs of some

mathematical results we later employ in Appendix B to prove the results in the main text.
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A Mathematical appendix

A.1 Toolkit lemmas

In this part of the appendix we provide characterizations of constant superadditivity

which we later use to prove our results in the main text.

LEMMA 2. Fix K ⊆ R. A map I : B0(Σ,K ) → R is constant superadditive if and only if

I (ϕ+k) ≤ I (ϕ)+k for all ϕ ∈ B0(Σ,K ) and k ≤ 0 such that ϕ+k ∈ B0(Σ,K ).

Proof. Suppose I is constant superadditive, ϕ ∈ B0(Σ,K ), and k ≤ 0 such that ϕ+k ∈
B0(Σ,K ). It follows that

I (ϕ) = I (ϕ+k −k) ≥ I (ϕ+k)−k.

The converse is proved in an analogous fashion.

LEMMA 3. Fix a convex K ⊆R with 0 ∈ intK and a continuous map I : B0(Σ,K ) →R. We

have that I is constant superadditive if and only if

I (αϕ+ (1−α)k) ≥ I (αϕ)+ (1−α)k (9)

for all α ∈ [0,1], ϕ ∈ B0(Σ,K ), and k ∈ K ∩R+.

Proof. The proof follows from a minor modification of Lemma 5 in Cerreia-Vioglio et al.

(2014), we report it here for completeness. If I is constant superadditive, then it is

straightforward to see that (9) must hold. As for the converse, first notice that, since I

is continuous, we can assume that K = (a,b) for some a,b ∈ R̄without loss of generality.

Let ϕ ∈ B0(Σ,K ) and k ∈ R++ be such that ϕ+ k ∈ B0(Σ,K ). Then, we have that a <
infϕ, sup(ϕ+k) < b and there exists α ∈ (0,1) such that ϕ/α, (ϕ+k)/α ∈ B0(Σ,K ). Since

k > 0 and 0 ∈ intK = (a,b), there exists n ≥ 2 such that

1
n k

1−α ∈ K .

Then, by convexity of K ,

ϕ+ m
n k

α
= m

n

ϕ+k

α
+

(
1− m

n

)
ϕ

α
∈ B0(Σ,K )
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for all m = 0, . . . ,n −1. For all m = 0, . . . ,n −1, by (9), it follows that

I

(
ϕ+ m +1

n
k

)
= I

αϕ+ m
n k

α
+ (1−α)

1
n k

1−α

≥ I

(
ϕ+ m

n
k

)
+ k

n
.

Moreover, this yields,

I
(
ϕ+k

)− I (ϕ) =
n−1∑
m=0

(
I

(
ϕ+ m +1

n
k

)
− I

(
ϕ+ m

n
k

))
≥

n−1∑
m=0

k

n
= k.

Thus, I is constant superadditive.

For all T : B0(Σ,K ) →R, ϕ ∈ B0(Σ,K ), define T̄ : B0(Σ,−K ) →R as T̄ (ϕ) =−T (−ϕ).

LEMMA 4. Fix K ⊆R and a map I : B0(Σ,K ) →R. Then, I is constant superadditive if and

only if Ī is constant superadditive.

Proof. Suppose I is constant superadditive. Ifϕ ∈ B0(Σ,−K ), k ≤ 0, andϕ+k ∈ B0(Σ,−K ),

then

Ī (ϕ+k) =−I (−ϕ−k) ≤−I (−ϕ)+k = Ī (ϕ)+k.

Since k ≤ 0, by Lemma 2, Ī is constant superadditive. The converse follows by I = ¯̄I .

A.2 Extension results

Here we provide some instrumental extension results. For each interval K ⊆R, we denote

by K∞ := K ∪ [supK ,∞).

LEMMA 5. If K is an interval and T : B0(Σ,K ) →R is constant superadditive, monotone,

and normalized, then the map T̃ : B0(Σ,K∞) → R̄ defined as

T̃ (ψ) = sup
{
T (ϕ)+m :ϕ ∈ B0(Σ,K ), m ≥ 0, ϕ+m ≤ψ}

for all ψ ∈ B0(Σ,K∞) is a real-valued, constant superadditive, monotone, and normalized

extension of T to B0(Σ,K∞).

Proof. Monotonicity is immediate as the larger ψ gets the larger is the set over which we

are taking the supremum. To prove that T̃ extends T notice that for all ψ ∈ B0(Σ,K ), we

have T̃ (ψ) ≥ T (ψ). Conversely, notice that for all ψ,ϕ ∈ B0(Σ,K ), and m ≥ 0, with ϕ+m ≤
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ψ, we have that ϕ+m ∈ B0(Σ,K ) and by monotonicity and constant superadditivity of T ,

we have

T (ϕ)+m ≤ T (ϕ+m) ≤ T (ψ).

By the arbitrariness of ϕ and m, we have T̃ (ψ) = T (ψ). Thus, T̃ is a monotonic extension

of T . Now we prove that T̃ satisfies constant superadditivity. To this end notice first that

T̃ (ψ) = sup
ϕ∈B0(Σ,K ), ϕ≤ψ

{
T (ϕ)+ inf

s∈S

{
ψ(s)−ϕ(s)

}}

for all ψ ∈ B0(Σ,K∞). Let ψ ∈ B0(Σ,K∞) and k ≥ 0,

T̃ (ψ+k) = sup
ϕ∈B0(Σ,K ), ϕ≤ψ+k

{
T (ϕ)+ inf

s∈S

{
ψ(s)+k −ϕ(s)

}}
≥ sup
ϕ∈B0(Σ,K ), ϕ≤ψ

{
T (ϕ)+ inf

s∈S

{
ψ(s)+k −ϕ(s)

}}
= sup
ϕ∈B0(Σ,K ), ϕ≤ψ

{
T (ϕ)+ inf

s∈S

{
ψ(s)−ϕ(s)

}}+k

= T̃ (ψ)+k.

Next we prove that T̃ is a real-valued map. If ψ ∈ B0(Σ,K ), then T̃ (ψ) = T (ψ) ∈ R. If

ψ ∈ B0(Σ,K∞) \ B0(Σ,K ), then for all ϕ ∈ B0(Σ,K ) and m ≥ 0 with ϕ+m ≤ψ, we have that

T (ϕ)+m ≤ T (supϕ)+m = supϕ+m ≤ supψ<∞

the equality follows from the normalization of T and the fact that ϕ is a simple function.

To conclude we show that T̃ is also normalized. If k ∈ K , then T̃ (k) = T (k) = k. If

k ∈ K∞ \ K , then k ≥ supK . Then, there exists t ∈ K and m ≥ 0 such that t +m = k, and

hence T̃ (k) = T (t )+m = t +m = k. Thus, T̃ is normalized.

LEMMA 6. If K is an interval with infK = 0 and T : B0(Σ,K ) →R is positively superhomo-

geneous, monotone, and normalized, then the map T̃ : B0(Σ,K∞) → R̄ defined as

T̃ (ψ) = sup
{
αT (ϕ) :ϕ ∈ B0(Σ,K ), α≥ 1, αϕ≤ψ}

for all ψ ∈ B0(Σ,K∞) is a positively superhomogeneous, monotone, and normalized exten-

sion of T to B0(Σ,K∞).
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Proof. Monotonicity is immediate as the larger ψ gets the larger is the set over which we

are taking the supremum. To prove that T̃ extends T notice that for all ψ ∈ B0(Σ,K ), we

have T̃ (ψ) ≥ T (ψ). Conversely, notice that for all ψ,ϕ ∈ B0(Σ,K ), and α≥ 1, with αϕ≤ψ,

we have that αϕ ∈ B0(Σ,K ) and by monotonicity and positive superhomogeneity of T , we

have

αT (ϕ) ≤ T (αϕ) ≤ T (ψ).

By the arbitrariness of ϕ and α, we have T̃ (ψ) = T (ψ). Thus, T̃ is a monotonic extension

of T . Now we prove that T̃ satisfies positive superhomogeneity. To this end notice first

that

T̃ (ψ) = sup
ϕ∈B0(Σ,K ), ϕ≤ψ

T (ϕ) inf
s∈S:ϕ(s)>0

{
ψ(s)

ϕ(s)

}
for all ψ ∈ B0(Σ,K∞). Let ψ ∈ B0(Σ,K∞) and α≥ 1,

T̃ (αψ) = sup
ϕ∈B0(Σ,K ), ϕ≤αψ

T (ϕ) inf
s∈S:ϕ(s)>0

{
αψ(s)

ϕ(s)

}
≥ sup
ϕ∈B0(Σ,K ), ϕ≤ψ

T (ϕ) inf
s∈S:ϕ(s)>0

{
αψ(s)

ϕ(s)

}
=α sup

ϕ∈B0(Σ,K ), ϕ≤ψ

T (ϕ) inf
s∈S:ϕ(s)>0

{
ψ(s)

ϕ(s)

}
=αT̃ (ψ).

Next we prove that T̃ is a real-valued map. If ψ ∈ B0(Σ,K ), then T̃ (ψ) = T (ψ) ∈ R. If

ψ ∈ B0(Σ,K∞) \ B0(Σ,K ), then for all ϕ ∈ B0(Σ,K ) and α≥ 1 with αϕ≤ψ, we have that

αT (ϕ) ≤αT (supϕ) =αsupϕ≤ supψ<∞

the equality follows from the normalization of T and the fact that ϕ is a simple function.

To conclude we prove that T̃ is normalized. If k ∈ K , then T̃ (k) = T (k) = k. If k ∈ K∞\K ,

then k ≥ supK . Therefore, there exist α ≥ 1 and t ∈ K such that αt = k, and hence

T̃ (k) =αT (t ) =αt = k.
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A.3 Envelope representations

Before going into further results, we provide notation used throughout the remainder of

Appendix A. For a convex set K ⊆R, and ξ,ϕ ∈ B0(Σ,K ), we define the following sets

Cξ(ϕ) = {
k ∈R : ξ+k ≥ϕ, ξ+k ∈ B0(Σ,K )

}
, Mξ(ϕ) = {

α> 0 :αξ≥ϕ, αξ ∈ B0(Σ,K )
}

cξ(ϕ) = {
k ∈R :ϕ≥ ξ+k, ξ+k ∈ B0(Σ,K )

}
, mξ(ϕ) = {

α> 0 :ϕ≥αξ, αξ ∈ B0(Σ,K )
}

.

All the sets defined above could well be empty. Fixing a map I : B0(Σ,K ) → R̄, we define

the following auxiliary functionals associated to I :

Iξ(ϕ) = inf
{

I (ξ+k) : k ∈Cξ(ϕ)
}

, Jξ(ϕ) = inf
{

I (αξ) :α ∈ Mξ(ϕ)
}

,

Sξ(ϕ) = sup
{

I (ξ+k) : k ∈ cξ(ϕ)
}

, Hξ(ϕ) = sup
{

I (αξ) :α ∈ mξ(ϕ)
}

for all ξ,ϕ ∈ B0(Σ,K ). We adopt the convention that inf;=∞ and sup;=−∞. If Cξ(ϕ) =
Mξ(ϕ) =;, then Iξ(ϕ) = Jξ(ϕ) =∞, while if cξ(ϕ) = mξ(ϕ) =;, Sξ(ϕ) = Hξ(ϕ) =−∞.

PROPOSITION 4. Fix a convex K ⊆R and a monotone and normalized map I : B0(Σ,K ) → R̄.

Then, for all ξ ∈ B0(Σ,K ),

(i) Iξ, Jξ, Sξ, and Hξ are monotone.

(ii) Iξ ≥ I , Jξ ≥ I , Sξ ≤ I , and Hξ ≤ I .

(iii) Iξ is quasiconvex and Sξ is quasiconcave.

(iv) If K ⊆R+, then Jξ is quasiconvex and Hξ is quasiconcave.

Proof. (i) For all ϕ,ψ,ξ ∈ B0(Σ,K ) with ϕ≥ψ we have Cξ(ϕ) ⊆Cξ(ψ), Mξ(ϕ) ⊆ Mξ(ψ),

cξ(ψ) ⊆ cξ(ϕ), and mξ(ψ) ⊆ mξ(ϕ). This implies that Iξ, Jξ, Sξ and Hξ are monotone.

(ii) Fix ϕ,ξ ∈ B0(Σ,K ). If Cξ(ϕ) =;, Iξ(ϕ) =∞≥ I (ϕ), while Jξ(ϕ) =∞≥ I (ϕ) whenever

Mξ(ϕ) =;, and similarly if cξ(ϕ) =;, then I (ϕ) ≥−∞= Sξ(ϕ), while I (ϕ) ≥−∞=
Hξ(ϕ) whenever mξ(ϕ) =;. Thus, we assume such sets to be nonempty. By mono-

tonicity of I , we have that I (ξ+k) ≥ I (ϕ) for all k ∈Cξ(ϕ). Analogously, I (αξ) ≥ I (ϕ)

for all α ∈ Mξ(ϕ). Thus, Iξ(ϕ) ≥ I (ϕ) and Jξ(ϕ) ≥ I (ϕ) for all ϕ ∈ B0(Σ,K ). An

analogous argument for k ∈ cξ(ϕ) and α ∈ mξ(ϕ) concludes the proof of the claim.
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(iii) Fix ξ ∈ B0(Σ,K ), α ∈ (0,1), and ϕ1,ϕ2 ∈ B0(Σ,K ). If max
{

Iξ(ϕ1), Iξ(ϕ2)
} =∞, then

Iξ(αϕ1+(1−α)ϕ2) ≤ max
{

Iξ(ϕ1), Iξ(ϕ2)
}

. Thus, assume that Iξ(ϕ1), Iξ(ϕ2) are finite.

We prove that for all t ∈R,22

(∀i = 1,2, Iξ(ϕi ) ≤ t
)=⇒ Iξ

(
αϕ1 + (1−α)ϕ2

)≤ t .

For all ε> 0, there exist k1,k2 ∈R such that, for all i = 1,2, ξ+ki ≥ϕi , ξ+ki ∈ B0(Σ,K ),

and

I (ξ+ki ) ≤ Iξ(ϕi )+ε≤ t +ε.

We have thatαϕ1+(1−α)ϕ2 ≤α(ξ+k1)+(1−α)(ξ+k2) ≤ ξ+k where k = max
{
k1,k2

}
and hence, by monotonicity of I ,

Iξ(αϕ1 + (1−α)ϕ2) ≤ I (ξ+k) ≤ t +ε.

The claim follows by arbitrariness of ε. The quasiconcavity of Sξ is proved analo-

gously.

(iv) Fix ξ ∈ B0(Σ,K ), α ∈ (0,1), and ϕ1,ϕ2 ∈ B0(Σ,K ). If max
{

Jξ(ϕ1), Jξ(ϕ2)
} =∞, then

Jξ(αϕ1+(1−α)ϕ2) ≤ max
{

Jξ(ϕ1), Jξ(ϕ2)
}

. Thus, assume that Jξ(ϕ1), Jξ(ϕ2) are finite

Now we pass to the quasiconvexity of Jξ. We prove that for all t ∈R,

(∀i = 1,2, Jξ(ϕi ) ≤ t
)=⇒ Jξ

(
αϕ1 + (1−α)ϕ2

)≤ t .

For all ε> 0, there are β1,β2 > 0 so that, for all i = 1,2, βiξ≥ϕi , βiξ ∈ B0(Σ,K ), and

I (βiξ) ≤ Jξ(ϕi )+ε≤ t +ε.

Since K ⊆R+, we have that ξ≥ 0 and henceαϕ1+(1−α)ϕ2 ≤αβ1ξ+(1−α)β2ξ≤βξ
where β= max

{
β1,β2

}
. Therefore, by monotonicity of I ,

Jξ(αϕ1 + (1−α)ϕ2) ≤ I (βξ) ≤ t +ε.

By the arbitrariety of ε the claim follows. The quasiconcavity of Hξ is proved

analogously.

22Here we follow the same steps provided in Han et al. (2022) (proof of Theorem 4.1 therein).
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PROPOSITION 5. Fix a convex K ⊆R and a monotone map I : B0(Σ,K ) → R̄. If I is constant

superadditive, then, for all ξ ∈ B0(Σ,K ), Iξ and Sξ are constant superadditive.

Proof. Letϕ,ξ ∈ B0(Σ,K ), and m ≥ 0 be such that ϕ+m ∈ B0(Σ,K ). If Iξ(ϕ+m) =∞, then

the claim follows. Thus, suppose Iξ(ϕ+m) ∈R. By Proposition 4 and the monotonicity of

I , we have that Iξ is monotone, and hence Iξ(ϕ) ∈ R. These simple observations imply

that Cξ(ϕ+m) and Cξ(ϕ) are not empty. Then, we have that

Iξ(ϕ+m) = inf
{

I (ξ+k) : k ∈R s.t. ξ+k ∈ B0(Σ,K ) and ξ+ (k −m) ≥ϕ}
= inf

{
I (ξ+ (k −m)+m) : k ∈R s.t. ξ+k ∈ B0(Σ,K ) and ξ+ (k −m) ≥ϕ}

≥ inf
{

I (ξ+k −m) : k ∈R s.t. ξ+k ∈ B0(Σ,K ) and ξ+ (k −m) ≥ϕ}+m

≥ inf
{

I (ξ+ r ) : r ∈R s.t. ξ+ r ∈ B0(Σ,K ) and ξ+ r ≥ϕ}+m

= Iξ(ϕ)+m

where the second-to-last inequality follows from the constant superadditivity of I and

the fact that since K is convex and m ≥ 0, the following inequalities

ϕ≤ ξ+k −m ≤ ξ+k

imply that ξ+k −m ∈ B0(Σ,K ), whenever ξ+k ∈ B0(Σ,K ). The last inequality follows

from observing that for all k ∈R such that ξ+k ∈ B0(Σ,K ) and ξ+k −m ≥ϕ, there is r ∈R
such that ξ+ r ∈ B0(Σ,K ) and ξ+ r ≥ϕ. The proof of the constant superadditivity of Sξ is

analogous and follows the same steps choosing m ≤ 0 and applying Lemma 2.

Denote by K the collection of intervals K in R which satisfy at least one of the

following: K ∈ {[0, a], (0, a], [0, a), (0, a), [b,0], (b,0], [b,0), (b,0) : a > 0,b < 0}; 0 ∈ intK ; K =
[0,∞),K = (−∞,0].

PROPOSITION 6. Fix K ∈ K and a monotone map I : B0(Σ,K ) → R̄. If I is positively

superhomogeneous, then, for all ξ ∈ B0(Σ,K ), Jξ is positively superhomogeneous. If K =
[0,∞), then Hξ is positively superhomogeneous.

Proof. Let λ ≥ 1 and ϕ,ξ ∈ B0(Σ,K ) with λϕ ∈ B0(Σ,K ). If Jξ(λϕ) = ∞, then the claim

follows. If Jξ(λϕ) ∈ R, then there exists α > 0 such that αξ ≥ λϕ and αξ ∈ B0(Σ,K ).
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Since K ∈ K and λ ≥ 1, we have that (α/λ)ξ ∈ B0(Σ,K ). Thus, Jξ(ϕ) ∈ R. These simple

observations imply that Mξ(λϕ) and Mξ(ϕ) are not empty. Then, we have that

Jξ(λϕ) = inf
{

I (αξ) :α> 0 s.t. αξ≥λϕ and αξ ∈ B0(Σ,K )
}

= inf

I

(
αλ

ξ

λ

)
:α> 0 s.t.

α

λ
ξ≥ϕ and αξ ∈ B0(Σ,K )


≥λ inf

I

(
α
ξ

λ

)
:α> 0 s.t.

α

λ
ξ≥ϕ and αξ ∈ B0(Σ,K )


≥λ inf

{
I
(
γξ

)
: γ> 0 s.t. γξ≥ϕ and γξ ∈ B0(Σ,K )

}
=λJξ(ϕ)

where the second-to-last inequality follows from positive superhomogeneity and the fact

that (α/λ)ξ ∈ B0(Σ,K ) whenever αξ ∈ B0(Σ,K ). The last inequality follows from the fact

that, for each α> 0, with (α/λ)ξ≥ϕ and αξ ∈ B0(Σ,K ), there exists γ> 0 such that γξ≥ϕ
and γξ ∈ B0(Σ,K ). Thus, Jξ is positively superhomogeneous.

If K = [0,∞), the exact same arguments but with λ ∈ (0,1) such that λϕ ∈ B0(Σ,K ), yield

that Hξ(λϕ) ≤ λHξ(ϕ), and hence Hξ is positively superhomogeneous. The condition

K = [0,∞) is used to guarantee that (α/λ)ξ ∈ B0(Σ,K ).

A.4 Semicontinuity

For each ϕ,ψ ∈ B0(Σ), the set [ϕ,ψ] = {ξ ∈ B0(Σ) :ϕ≤ ξ≤ψ} will be referred to as an order

interval. A subset Y of B0(Σ,K ) is lower open (resp., upper open) if, for all ϕ ∈ Y , there

exists ε > 0 such that [ϕ−ε,ϕ] ⊆ Y (resp., [ϕ,ϕ+ε] ⊆ Y ). Fix K ⊆ R. It is important to

notice that whenever K is a nontrivial interval, B0(Σ,K ) is either lower open, or upper

open, or an order interval. Given a function T : B0(Σ,K ) → R̄we define T − : B0(Σ,K ) → R̄

as

T −(ϕ) = sup
U∈N (ϕ,K )

inf
ψ∈U

T (ψ)

for all ϕ ∈ B0(Σ,K ), where N (ϕ,K ) denotes the set of all neighborhoods of ϕ.23 For

simplicity, when K = R we write N (ϕ). Such function T − is referred to as the lower

23The neighborhoods of ϕ ∈ B0(Σ,K ) are the subsets of B0(Σ,K ) that contain ϕ in their interior, relative
to (B0(Σ,K ),∥·∥∞).
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semicontinuous envelope of T . By Proposition 3.5 in Dal Maso (1993), we have that

{T − ≤ k} = ⋂
t>k

cl({T ≤ t }) (10)

for all k ∈ R. Analogously, we define the upper semicontinuous envelope of T as the

function T + : B0(Σ,K ) → R̄ such that T +(ϕ) = infU∈N (ϕ,K ) supψ∈U T (ψ) for allϕ ∈ B0(Σ,K ).

We report some basic properties of such envelopes, the first two points extend Lemmas

29 and 30 in Cerreia-Vioglio et al. (2011c).

LEMMA 7. Let K ⊆R be convex and fix a map T : B0(Σ,K ) → R̄. Then,

(i) If T is monotone and B0(Σ,K ) is lower open, then T − is monotone.

(ii) If T is monotone and B0(Σ,K ) is either upper open or an order interval, then T + is

monotone.

(iii) If T is quasiconvex (quasiconcave), then T − and T + are quasiconvex (quasiconcave).

(iv) If T is constant superadditive, then T − and T + are constant superadditive.

(v) If T is positively superhomogeneous, then T − and T + are positively superhomoge-

neous.

Proof. We show that (i) and (ii) hold. Lemma 29 and 30 of Cerreia-Vioglio et al. (2011c)

can be easily adapted to show that, when B0(Σ,K ) is lower open, then T −(ϕ) = supn T (ϕn)

for all ϕ,ϕn ∈ B0(Σ,K ) and ϕn → ϕ with ϕ > ϕn . Analogously, when B0(Σ,K ) is upper

open, then T +(ϕ) = infn T (ϕn) for all ϕ,ϕn ∈ B0(Σ,K ) and ϕn → ϕ with ϕ < ϕn . Then,

in these cases, monotonicity of T − and T + readily follows from the same proofs as in

Lemmas 29 and 30 of Cerreia-Vioglio et al. (2011c).24 The only remaining case is the one

with K = [a,b] for some a < b. To this end, define T̂ : B0(Σ) → R̄ as

T̂ (ϕ) = T (ϕ∧b ∨a)

for all ϕ ∈ B0(Σ). Clearly, T̂ is a monotonic extension of T . We want to show that T̂ + is an

extension of T +. If this is the case, by the monotonicity of T̂ , Lemma 29 of Cerreia-Vioglio

et al. (2011c) would yield that T + must be monotone. Fix ϕ ∈ B0(Σ,K ). For all U ∈N (ϕ),

24Their proofs are provided in the working paper version of their paper.
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we have that

sup
ψ∈U

T̂ (ψ) ≥ sup
ψ∈U∩B0(Σ,K )

T̂ (ψ) = sup
ψ∈U∩B0(Σ,K )

T (ψ)

which yields

T̂ +(ϕ) = inf
U∈N (ϕ)

sup
ψ∈U

T̂ (ψ) ≥ inf
U∈N (ϕ)

sup
ψ∈U∩B0(Σ,K )

T (ψ)

= inf
O∈N (ϕ,K )

sup
ψ∈O

T (ψ) = T +(ϕ).

To prove the converse inequality, notice that, by Proposition 3.6(b) in Dal Maso (1993),

there exists a sequence (ϕn)n∈N in B0(Σ) such that ϕn →ϕ and

T̂ +(ϕ) ≤ liminf
n→∞ T̂ (ϕn). (11)

Then, by definition of T̂ , we have that

T̂ +(ϕ) ≤ liminf
n→∞ T̂ (ϕn) = liminf

n→∞ T (ϕn ∧b ∨a)

≤ limsup
n→∞

T (ϕn ∧b ∨a) ≤ limsup
n→∞

T +(ϕn ∧b ∨a) ≤ T +(ϕ)

where the first inequality is due to (11), the second to definition of T̂ , the third to the

properties of limit superiors, the fourth to the fact that T + ≥ T , and the last one to

the fact that ϕn ∧b ∨a →ϕ and that T + is upper semicontinuous. Thus, we have that

T̂ +(ϕ) = T +(ϕ).

Point (iii) follows from (10) and the analogous version for T +. To prove point (iv), let

ϕ ∈ B0(Σ,K ) and k ≥ 0 withϕ+k ∈ B0(Σ,K ). Notice that N (ϕ+k,K ) = {
U +k : U ∈N (ϕ,K )

}
.

Thus,

T −(ϕ+k) = sup
U+k∈N (ϕ,K )

inf
ψ∈U+k

T (ψ) = sup
U∈N (ϕ,K )

inf
ψ∈U

T (ψ+k)

≥ sup
U∈N (ϕ,K )

inf
ψ∈U

T (ψ)+k = T −(ϕ)+k.

The proof for T + is analogous. To prove point (v) let ϕ ∈ B0(Σ,K ) and α ≥ 1 such that
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αϕ ∈ B0(Σ,K ). Notice that N (αϕ,K ) = {
αU : U ∈N (ϕ,K )

}
. Thus,

T −(αϕ) = sup
αU∈N (ϕ,K )

inf
ψ∈αU

T (ψ) = sup
U∈N (ϕ,K )

inf
ψ∈U

T (αψ)

≥ sup
U∈N (ϕ,K )

inf
ψ∈U

αT (ψ) =αT −(ϕ).

The proof for T + is analogous.

PROPOSITION 7. Let K ⊆R be convex and I : B0(Σ,K ) → R̄ a monotone map. The following

hold

(i) For all ϕ ∈ B0(Σ,K ),

I (ϕ) = min
ξ∈B0(Σ,K )

I−ξ (ϕ) = min
ξ∈B0(Σ,K )

J−ξ (ϕ) = max
ξ∈B0(Σ,K )

S−
ξ (ϕ) = max

ξ∈B0(Σ,K )
H−
ξ (ϕ)

provided that B0(Σ,K ) is lower open and I lower semicontinuous.

(ii) For all ϕ ∈ B0(Σ,K ),

I (ϕ) = min
ξ∈B0(Σ,K )

I+ξ (ϕ) = min
ξ∈B0(Σ,K )

J+ξ (ϕ) = max
ξ∈B0(Σ,K )

S+
ξ (ϕ) = max

ξ∈B0(Σ,K )
H+
ξ (ϕ)

provided that B0(Σ,K ) is either upper open or an order interval and I upper semi-

continuous.

Proof. Let ϕ ∈ B0(Σ,K ). By Proposition 4, we have that

I−ξ (ϕ) ≥ sup
U∈N (ϕ,K )

inf
ψ∈U

I (ψ) = I (ϕ)

for all ϕ,ξ ∈ B0(Σ,K ), where the last equality follows by the continuity of I . Moreover,

I−ϕ (ϕ) = sup
U∈N (ϕ,K )

inf
ψ∈U

Iϕ(ψ) ≤ sup
U∈N (ϕ,K )

Iϕ(ϕ) = I (ϕ)

for all ϕ ∈ B0(Σ,K ), where the last equality follows from the fact that Iϕ(ϕ) = I (ϕ). The

exact same proof can be provided to retrieve the rest of the equalities.
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A.5 Quasiconvex duality

Given K ⊆R and T : B0(Σ,K ) → R̄, we define the function GT :R×△(S) → R̄ as

GT (t , p) = sup

{
T (ϕ) :ϕ ∈ B0(Σ,K ) and

∫
S
ϕdp ≤ t

}
for all (t , p) ∈R×△(S). It is immediate to see that GT is monotone in the first argument.

Moreover, by Lemma 31 in Cerreia-Vioglio et al. (2011c), GT is quasiconvex.

PROPOSITION 8. If K ⊆ R is convex and unbounded from above and T : B0(Σ,K ) → R̄ is

constant superadditive, then GT is constant superadditive in the first argument.

Proof. The proof mimics proof methods provided in Cerreia-Vioglio et al. (2022). Fix

t ∈ R, k ≥ 0, and p ∈△(S). By definition of GT (t , p), there exists a sequence (ϕn)n∈N in

B0(Σ,K ) such that T (ϕn) ↑ GT (t , p) and
∫

Sϕndp ≤ t for all n ∈ N. Then, we have that∫
Sϕn +k ≤ t +k. Since K is unbounded from above, we have that ϕn +k ∈ B0(Σ,K ) for all

n ∈N. Given that T is constant superadditive, we have

GT (t +k, p) ≥ T (ϕn +k) ≥ T (ϕn)+k →GT (t , p)+k

proving that GT is constant superadditive in the first argument.

PROPOSITION 9. If either K = (a,∞), K = [b,∞), or K = R for some a > 0 b ≥ 0, and

T : B0(Σ,K ) → R̄ is positively superhomogeneous, then GT is positively superhomogeneous

in the first argument.

Proof. Fix t ∈ R, α ≥ 1, and p ∈△(S). By definition of GT (t , p), there exists a sequence

(ϕn)n∈N in B0(Σ,K ) such that T (ϕn) ↑ GT (t , p) and
∫

Sϕndp ≤ t for all n ∈ N. Then, we

have that
∫

Sαϕn ≤αt . By the hypotheses on K , we have that αϕn ∈ B0(Σ,K ) for all n ∈N.

Given that T is positively superhomogeneous, we have

GT (αt , p) ≥ T (αϕn) ≥αT (ϕn) →αGT (t , p)

proving that GT is positively superhomogeneous in the first argument.

The exact same approach also yields the following.

LEMMA 8. If K = [0,∞) and T : B0(Σ,K ) → R̄ is positively homogeneous, then GT is posi-

tively homogeneous.
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Proof. Fix t ∈ R, α > 0, and p ∈△(S). By definition of GT (t , p), there exists a sequence

(ϕn)n∈N in B0(Σ,K ) such that T (ϕn) ↑GT (t , p) and
∫

Sϕndp ≤ t for all n ∈N. Then, we have

that
∫

Sαϕn ≤αt . Since K = [0,∞), we have that αϕn ∈ B0(Σ,K ) for all n ∈N. Moreover,

since T is positively homogeneous we have that

GT (αt , p) ≥ T (αϕn) =αT (ϕn) →αGT (t , p)

proving that GT is positively homogeneous in the first argument.

A.6 Monotone and normalized functionals

Section A.5 provided the tools to retrieve the following general representation.

PROPOSITION 10. Fix a convex K ⊆R and a continuous map I : B0(Σ,K ) → R̄. Then, the

following are equivalent

(i) I is monotone and normalized.

(ii) There exists a family Φ of monotone and quasiconvex functionals mapping from

B0(Σ,K ) to R̄ such that

I (ϕ) = min
J∈Φ

J (ϕ)

for all ϕ ∈ B0(Σ,K ). Moreover, minJ∈Φ J (k) = k for all k ∈ K . If B0(Σ,K ) is lower open,

then each J can be taken lower semicontinuous. If B0(Σ,K ) is upper open or an order

interval, then each J can be taken upper semicontinuous.

(iii) There exists a familyΨ of monotone and quasiconcave functionals mapping from

B0(Σ,K ) to R̄ such that

I (ϕ) = max
H∈Ψ

H(ϕ)

for all ϕ ∈ B0(Σ,K ). Moreover, maxH∈ΨH(k) = k for all k ∈ K . If B0(Σ,K ) is lower

open, then each H can be taken lower semicontinuous. If B0(Σ,K ) is upper open or

an order interval, then each H can be taken upper semicontinuous.

Proof. (i) implies (ii). Suppose first that B0(Σ,K ) is lower open. LetΦ= {I−
ξ

: ξ ∈ B0(Σ,K )}.

By Proposition 4 and Lemma 7, we have that each J ∈Φ is monotone, quasiconvex, and

lower semicontinuous. Moreover, by Proposition 7, we have that, for all ϕ ∈ B0(Σ,K ),

I (ϕ) = min
J∈Φ

J (ϕ).
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Since I is normalized, minJ∈Φ J (k) = k for all k ∈ K . If B0(Σ,K ) is upper open or an order

interval the same steps applied to the familyΦ= {I+
ξ

: ξ ∈ B0(Σ,K )}, yield the claim with

upper semicontinuity.

(i) implies (iii). We apply the same steps as in the previous implication, but with

Ψ= {S−
ξ

: ξ ∈ B0(Σ,K )}, when B0(Σ,K ) is lower open, or withΨ= {S+
ξ

: ξ ∈ B0(Σ,K )}, when

B0(Σ,K ) is either upper open or an order interval. By Proposition 4 and Lemma 7, we

have that each H ∈Ψ is monotone, quasiconcave, and lower semicontinuous or upper

semicontinuous depending on whether B0(Σ,K ) is lower open, upper open, or an order

interval. Moreover, by Proposition 7, we have that, for all ϕ ∈ B0(Σ,K ),

I (ϕ) = max
H∈Ψ

H(ϕ).

Since I is normalized, maxH∈ΨH(k) = k for all k ∈ K .

To conclude, notice that the implications: (ii) implies (i) and (iii) implies (i) follow

immediately from the monotonicity of all J ∈Φ and H ∈Ψ, and the normalization from

minJ∈Φ J (k) = k and maxH∈ΨH(k) = k for all k ∈ K .

A.7 Constant superadditivity

PROPOSITION 11. Fix a convex K ⊆R and a continuous map I : B0(Σ,K ) → R̄. Then, the

following are equivalent

(i) I is monotone, normalized, and constant superadditive.

(ii) There exists a familyΦ of monotone, constant superadditive, and quasiconvex func-

tionals mapping from B0(Σ,K ) to R̄ such that

I (ϕ) = min
J∈Φ

J (ϕ)

for all ϕ ∈ B0(Σ,K ). Moreover, minJ∈Φ J (k) = k for all k ∈ K . If B0(Σ,K ) is lower open,

then each J can be taken lower semicontinuous. If B0(Σ,K ) is upper open or an order

interval, then each J can be taken upper semicontinuous.

(iii) There exists a family Ψ of monotone, constant superadditive, and quasiconcave

functionals mapping from B0(Σ,K ) to R̄ such that

I (ϕ) = max
H∈Ψ

H(ϕ)
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for all ϕ ∈ B0(Σ,K ). Moreover, maxH∈ΨH(k) = k for all k ∈ K . If B0(Σ,K ) is lower

open, then each H can be taken lower semicontinuous. If B0(Σ,K ) is upper open or

an order interval, then each H can be taken upper semicontinuous.

Proof. It is immediate to see that both (ii) and (iii) imply (i). We prove that (i) implies (ii).

By Proposition 7, if K is lower open, then

I (ϕ) = min
ξ∈B0(Σ,K )

I−ξ (ϕ)

for all ϕ ∈ B0(Σ,K ). If K is upper open or an order interval, the same result holds with I+
ξ

in place of I−
ξ

for all ξ ∈ B0(Σ,K ). Moreover, by Propositions 4, 5, and Lemma 7 each I−
ξ

, I+
ξ

,

depending on whether K is lower open, upper open, or an order interval, is monotone,

quasiconvex, and constant superadditive. Thus, letting either Φ = {I−
ξ

: ξ ∈ B0(Σ,K )}

or Φ = {I+
ξ

: ξ ∈ B0(Σ,K )} according to the cases mentioned above, the claim follows.

To conclude the proof it is sufficient to show that (i) implies (iii). The proof is totally

analogous to the previous steps with either

I (ϕ) = max
ξ∈B0(Σ,K )

S−
ξ (ϕ) or I (ϕ) = max

ξ∈B0(Σ,K )
S+
ξ (ϕ)

in the case where K is lower open, upper open, or an order interval. In particular, we

let Ψ= {S−
ξ

: ξ ∈ B0(Σ,K )} when K is lower open. Instead if K is upper open or an order

interval we set Ψ = {S+
ξ

: ξ ∈ B0(Σ,K )}. By Propositions 4, 5, and Lemma 7 each S−
ξ

,S+
ξ

,

depending on whether K is lower open, upper open, or an order interval, is monotone,

quasiconcave, and constant superadditive.

PROPOSITION 12. Fix a convex K ⊆R and a continuous map I : B0(Σ,K ) →R. Then, the

following are equivalent

(i) I is monotone, normalized, and constant superadditive.

(ii) There exists a family G of constant superadditive and increasing in the first argument,

and quasiconvex functions G :R×△(S) →R such that

I (ϕ) = max
G∈G

inf
p∈△(S)

G

(∫
S
ϕdp, p

)
for all ϕ ∈ B0(Σ,K ). Moreover, maxG∈G infp∈△(S) G(k, p) = k for all k ∈ K .
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Proof. It is immediate to see that (ii) implies (i). To prove the converse, notice by Lemma

5, I admits a monotone, normalized, and constant superadditive extension Ĩ . Moreover,

we have two cases:

• If K is lower open, then Ĩ−, by the continuity of I and Lemma 7, is a lower semi-

continuous, monotone, and constant superadditive extension of I on B0(Σ,K∞).

Then, the result follows from Proposition 11, Theorem 36 in Cerreia-Vioglio et al.

(2011c),25 Proposition 8, and the normalization of I = Ĩ+|B0(Σ,K ).

• If K is upper open or an order interval, then Ĩ+, by the continuity of I and Lemma

7, is an upper semicontinuous, monotone, and constant superadditive extension

of I on B0(Σ,K∞). Then, the result follows from Proposition 11, Theorem 36 in

Cerreia-Vioglio et al. (2011c), Proposition 8, and the normalization of I = Ĩ+|B0(Σ,K ).

Thus, the proof is concluded.

The following result is adapted from Proposition A.3 in Han et al. (2022).

PROPOSITION 13. Fix a convex K ⊆R and a continuous map I : B0(Σ,K ) →R. Then, the

following are equivalent

(i) I is monotone, normalized, and constant superadditive.

(ii) For all ϕ ∈ B0(Σ,K ), there exists a family Φϕ of monotone, constant additive, and

convex functionals, mapping from B0(Σ,K ) to R, such that

I (ϕ) = min
J∈Φϕ

J (ϕ).

Moreover, minJ∈Φϕ J (k) = k for all k ∈ K , andΦϕ1 ⊆Φϕ2 for all ϕ1 ≥ϕ2 in B0(Σ,K ).

(iii) For all ϕ ∈ B0(Σ,K ), there exists a family Ψϕ of monotone, constant additive, and

concave functionals, mapping from B0(Σ,K ) to R, such that

I (ϕ) = max
H∈Ψϕ

H(ϕ).

Moreover, maxH∈Ψϕ H (k) = k for all k ∈ K , andΨϕ1 ⊆Ψϕ2 for allϕ2 ≥ϕ1 in B0(Σ,K ).
25Theorem 36 in Cerreia-Vioglio et al. (2011c) is provided for a function mapping in R, but the exact

same proof they provide applies to extended real-valued maps.
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Proof. We start proving that (i) implies (ii). Let ϕ ∈ B0(Σ,K ). For all ξ ∈ B0(Σ,K ) with

ξ≥ϕ, we have that for all s ∈ S,

ξ(s) ≥ ξ(s)+ sup{ϕ−ξ} ≥ ξ(s)+ϕ(s)−ξ(s) =ϕ(s).

Thus, since K is convex, for all ξ ∈ B0(Σ,K ) with ξ≥ϕ it follows that ξ+sup{ϕ−ξ} ∈ B0(Σ,K )

and sup{ϕ−ξ} ≤ 0. By monotonicity and constant superadditivity of I ,

I (ϕ) ≤ min
ξ≥ϕ

I (ξ+ sup{ϕ−ξ}) ≤ min
ξ≥ϕ

I (ξ)+ sup{ϕ−ξ} ≤ I (ϕ).

For all ξ,ψ ∈ B0(Σ,K ), define Tξ(ψ) = I (ξ)+ sup{ψ−ξ}. Therefore, letting Φϕ = {Tξ : ξ ∈
B0(Σ,K ), ξ≥ϕ}, we have that for all ϕ ∈ B0(Σ,K ),

I (ϕ) = min
J∈Φϕ

J (ϕ).

Notice that each J ∈Φϕ is monotone, constant additive, and quasiconvex. Thus, each

J ∈Φϕ is also convex. Moreover, as I is normalized, minJ∈Φk J (k) = k for all k ∈R. Clearly,

Φϕ1 ⊆Φϕ2 for all ϕ1 ≥ϕ2 in B0(Σ,K ).

(i) implies (iii). By Lemma 4, Ī is constant superadditive. Since it is also monotone

and normalized, we have that

−I (−ϕ) = min
J∈Φϕ

J (ϕ)

for allϕ ∈ B0(Σ) and some family of monotone, constant additive, and convex functionals.

Thus, we have that I (ϕ) = maxJ∈Φ−ϕ J̄(ϕ) for all ϕ ∈ B0(Σ). LettingΨϕ = { J̄ : J ∈Φ−ϕ} the

claim follows. In particular, notice that

ϕ1 ≤ϕ2 =⇒Ψϕ1 ⊆Ψϕ2

for all ϕ1,ϕ2 ∈ B0(Σ).

(iii) implies (i). Monotonicity and normalization are straightforward. We only need

to prove that I is constant superadditive. To this end, let ϕ ∈ B0(Σ,K ) and k ≥ 0 with

ϕ+k ∈ B0(Σ,K ). By assumption, we haveΨϕ ⊆Ψϕ+k , and hence

I (ϕ+k) = max
J∈Ψϕ+k

J (ϕ+k) = max
J∈Ψϕ+k

J (ϕ)+k ≥ max
J∈Ψϕ

J (ϕ)+k = I (ϕ)+k.
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The proof that (ii) implies (i) is proved analogously upon choosing k ≤ 0.

Therefore, applying convex duality results we retrieve the following representation.

Han et al. (2022) provides a specific form for the penalty functions, the interested reader

can consult their Appendix A.

PROPOSITION 14. Fix a convex K ⊆R and a continuous map I : B0(Σ,K ) →R. Then, the

following are equivalent

(i) I is monotone, normalized, and constant superadditive.

(ii) For all ϕ ∈ B0(Σ,K ), there exists a family Cϕ of lower semicontinuous and convex

functionals c : △(S) → (−∞,∞] such that

I (ϕ) = max
c∈Cϕ

min
p∈△(S)

{∫
S
ϕdp + c(p)

}
.

Moreover, maxc∈Ck minp∈△(S) c(p) = 0 and Cϕ1 ⊆Cϕ2 for all ϕ2 ≥ϕ1 in B0(Σ,K ).

Proof. The result follows from Proposition 13 above and Proposition 4 and Theorem 3 in

Cerreia-Vioglio et al. (2014).

A.8 Positive superhomogeneity

Here, we report the representation results for positive superhomogeneity.

PROPOSITION 15. Fix a convex K ⊆Rwith minK = 0 and a continuous map I : B0(Σ,K ) →
R̄. Then, the following are equivalent

(i) I is monotone, normalized, and positively superhomogeneous.

(ii) There exists a familyΦ of monotone, positively superhomogeneous, upper semicon-

tinuous, and quasiconvex functionals mapping from B0(Σ,K ) to R̄ such that

I (ϕ) = min
J∈Φ

J (ϕ)

for all ϕ ∈ B0(Σ,K ). Moreover, minJ∈Φ J (k) = k for all k ∈ K .

(iii) There exists a familyΨ of monotone, positively superhomogeneous, upper semicon-

tinuous, and quasiconcave functionals mapping from B0(Σ,K ) to R̄ such that

I (ϕ) = max
H∈Ψ

H(ϕ)
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for all ϕ ∈ B0(Σ,K ). Moreover, maxH∈ΨH(k) = k for all k ∈ K .

Proof. It is immediate to see that both (ii) and (iii) imply (i). If we prove that (i) implies

(ii) and that (i) implies (iii), then the proof is concluded. We start with (i) implies (ii).

First notice that by Lemma 6, there exists a positively superhomogeneous, monotone,

and normalized extension Ĩ of I on B0(Σ,K∞). Since I is continuous, and K is either

upper open or an order interval, we have that Ĩ+ is an upper semicontinuous, positively

superhomogeneous, and monotone extension of I on B0(Σ,K∞). By Proposition 7, since

K∞ is upper open and Ĩ+ is an extension of I , we have that

I (ϕ) = Ĩ+(ϕ) = min
ξ∈B0(Σ,K∞)

J+ξ (ϕ)

for all ϕ ∈ B0(Σ,K ), where the Jξ’s are the auxiliary functionals associated to Ĩ+. By

Propositions 4, 6, and Lemma 7, J+
ξ

is monotone, positively superhomogeneous, upper

semicontinuous, and quasiconvex. Thus, letting Φ = {J+
ξ

: ξ ∈ B0(Σ,K∞)} according to

the cases mentioned above, the claim follows. By the normalization of I , we have that

minJ∈Φ J (k) = Ĩ+(k) = I (k) = k for all k ∈ K .

To prove that (i) implies (iii), we can apply the same exact reasoning to the family

Ψ= {H+
ξ

: ξ ∈ B0(Σ,K∞)} of auxiliary functionals associated to the extension Ĩ+ of I . In

particular, by Proposition 7, since K∞ is upper open and Ĩ+ is an extension of I , we have

that

I (ϕ) = Ĩ+(ϕ) = max
ξ∈B0(Σ,K∞)

H+
ξ (ϕ)

for all ϕ ∈ B0(Σ,K ). By Propositions 4, 6, and Lemma 7 each H+
ξ

is monotone, upper

semicontinuous, quasiconvex, and positively superhomogeneous. Thus, lettingΨ= {H+
ξ

:

ξ ∈ B0(Σ,K∞)}, the claim follows. By the normalization of I , we have that maxH∈ΨH(k) =
Ĩ+(k) = I (k) = k for all k ∈ K .

PROPOSITION 16. Fix a convex K ⊆Rwith minK = 0 and a continuous map I : B0(Σ,K ) →
R. Then, the following are equivalent

(i) I is monotone, normalized, and positively superhomogeneous.

(ii) There exists a family G of positively superhomogeneous and increasing in the first

argument, and quasiconvex functions G :R×△(S) →R such that

I (ϕ) = max
G∈G

inf
p∈△(S)

G

(∫
S
ϕdp, p

)
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for all ϕ ∈ B0(Σ,K ). Moreover, maxG∈G infp∈△(S) G(k, p) = k for all k ∈ K .

Proof. That (ii) implies (i) is immediate to see. To prove the converse, notice by Lemma

6, I admits a monotone, normalized, and positively superhomogeneous extension Ĩ .

Moreover, as K is either upper open or an order interval we have that Ĩ+, by the continuity

of I and Lemma 7, is an upper semicontinuous, monotone, and positively superho-

mogeneous extension of I on B0(Σ,K∞). Then, the result follows from Proposition 15,

Theorem 36 in Cerreia-Vioglio et al. (2011c),26 Proposition 9, and the normalization of

I = Ĩ+|B0(Σ,K ).

PROPOSITION 17. Fix a convex K ⊆Rwith minK = 0 and a continuous map I : B0(Σ,K ) →
R. Then, the following are equivalent

(i) I is monotone, normalized, and positively superhomogeneous.

(ii) For all ϕ ∈ B0(Σ,K ), there exists a family Φϕ of monotone, sublinear functionals,

mapping from B0(Σ,K ) to R, such that

I (ϕ) = min
J∈Φϕ

J (ϕ).

Moreover, min
J∈Φϕ

J (k) = k for all k ∈ K , andΦϕ1 ⊆Φϕ2 for all ϕ1 ≥ϕ2 in B0(Σ,K ).

(iii) For all ϕ ∈ B0(Σ,K ), there exists a familyΨϕ of monotone, superlinear functionals,

mapping from B0(Σ,K ) to R, such that

I (ϕ) = max
H∈Ψϕ

H(ϕ).

Moreover, maxH∈Ψϕ H (k) = k for all k ∈ K , andΨϕ1 ⊆Ψϕ2 for allϕ2 ≥ϕ1 in B0(Σ,K ).

Proof. We start showing that (i) implies (ii). By Lemma 6 we have that I admits a posi-

tively superhomogeneous, and monotone extension Ĩ on B0(Σ,K∞). Moreover, since I is

continuous, and K is either upper open or an order interval, Lemma 7 yields that Ĩ+ is

an upper semicontinuous, positively superhomogeneous, and monotone extension of I .

Now we provide the representation result directly for Ĩ+. Notice that here K∞ = [0,∞).

Fix ϕ ∈ B0(Σ,K∞). For all ξ ≥ ϕ in B0(Σ,K∞) with ξ > 0, we have sup
{
ϕ/ξ

} ≤ 1, thus by

26Theorem 36 in Cerreia-Vioglio et al. (2011c) is provided for a function mapping in R, but the exact
same proof they provide applies to extended real-valued maps.
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monotonicity and positively superhomogeneity of I ,

Ĩ+(ϕ) ≤ min
ξ>0,ξ≥ϕ

Ĩ+
ξsup

{
ϕ

ξ

}≤ min
ξ>0,ξ≥ϕ

Ĩ+(ξ)sup

{
ϕ

ξ

}
≤ Ĩ+

(
ϕ+ 1

n

)
sup

 ϕ

ϕ+ 1
n

≤ Ĩ+
(
ϕ+ 1

n

)

for all n ∈N. By upper semicontinuity of Ĩ+ it follows that, for all ϕ ∈ B0(Σ,K∞),

I (ϕ) = limsup
n→∞

Ĩ+(ϕ) ≤ limsup
n→∞

min
ξ>0,ξ≥ϕ

Ĩ+(ξ)sup

{
ϕ

ξ

}
≤ limsup

n→∞
Ĩ+

(
ϕ+ 1

n

)
≤ I (ϕ)

Therefore, for all ϕ ∈ B0(Σ,K ),

I (ϕ) = Ĩ+(ϕ) = min
ξ>0,ξ≥ϕ

I (ξ)sup

{
ϕ

ξ

}
.

For all ξ ∈ B0(Σ,K∞) with ξ> 0, define Tξ(ψ) = I (ξ)sup{ψ/ξ} for all ψ ∈ B0(Σ,K∞). There-

fore, lettingΦϕ = {Tξ : ξ ∈ B0(Σ,K∞),ξ> 0,ξ≥ϕ}, we have that

I (ϕ) = min
J∈Φϕ

J (ϕ)

for all ϕ ∈ B0(Σ,K ). Since I (ξ) ≥ I (0) = 0 for all ξ ∈ B0(Σ,K ), we have that each J is mono-

tone and sublinear. Clearly,Φϕ1 ⊆Φϕ2 for all ϕ1 ≥ϕ2 in B0(Σ,K ). Since I is normalized,

minJ∈Φϕ J (k) = k for all k ∈ K .

Now we prove that (i) implies (iii). We start showing that (i) implies (ii). By Lemma

6 we have that I admits a positively superhomogeneous, and monotone extension Ĩ on

B0(Σ,K∞). Moreover, since I is continuous, and K is either upper open or an order inter-

val, Lemma 7 yields that Ĩ+ is an upper semicontinuous, positively superhomogeneous,

and monotone normalized extension of I . Letϕ ∈ B0(Σ,K∞). Ifϕ(s) = 0 for all s ∈ S, we let

Ψϕ = {0} and, since 0 ∈ K , by the normalization of I we have that I (ϕ) = maxT∈Ψϕ T (ϕ) = 0.

Clearly 0 is monotone and superlinear. Now suppose that ϕ(s) > 0 for some s ∈ S. Let

ξ ∈ B0(Σ,K∞) with ϕ≥ ξ and ξ(s) > 0 for some s ∈ S. We have that for all s′ ∈ S,

ϕ(s′) ≥ ξ(s′) inf
s:ξ(s)>0

{
ϕ(s)

ξ(s)

}
.
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Indeed, if ξ(s′) = 0, then the inequality follows as ϕ(s′) ≥ 0. If ξ(s′) > 0, then

ϕ(s′) = ξ(s′)
ϕ(s′)
ξ(s′)

≥ ξ(s′) inf
s:ξ(s)>0

{
ϕ(s)

ξ(s)

}
.

Paired with monotonicity and positive superhomogeneity of Ĩ+, this inequality yields the

following

Ĩ+(ϕ) ≥ max
ξ ̸=0,ϕ≥ξ

Ĩ+
ξ inf

s:ξ(s)>0

{
ϕ(s)

ξ(s)

}≥ max
ξ ̸=0,ϕ≥ξ

Ĩ+(ξ) inf
s:ξ(s)>0

{
ϕ(s)

ξ(s)

}
≥ Ĩ+(ϕ)

where the second-to-last inequality follows from infs:ξ(s)>0
{
ϕ(s)/ξ(s)

} ≥ 1, for all non-

identically zero ξ ∈ B0(Σ,K∞) with ϕ ≥ ξ. For all non-identically zero ξ ∈ B0(Σ,K∞),

define Pξ(ψ) = I (ξ) infs:ξ(s)>0
{
ψ(s)/ξ(s)

}
for all ψ ∈ B0(Σ,K∞). Since for all ξ ∈ B0(Σ,K∞),

Ĩ+(ξ) ≥ Ĩ+(0) = I (0) = 0, each Pξ is monotone and superlinear. Therefore, letting Ψϕ =
{Pξ : ξ ∈ B0(Σ,K∞),ϕ≥ ξ,ξ ̸= 0} for all ϕ ∈ B0(Σ,K ), we have found a family of monotone

and superlinear functionals such that

I (ϕ) = Ĩ+(ϕ) = max
H∈Ψϕ

H(ϕ)

for all ϕ ∈ B0(Σ,K ). Clearly,Ψϕ1 ⊆Ψϕ2 for all ϕ1 ≤ϕ2 in B0(Σ,K ). Since I is normalized,

maxH∈Ψϕ H(k) = k for all k ∈ K .

To conclude we prove that (ii) implies (i), and that (iii) implies (i). Suppose that

(ii) holds. It is immediate to notice that I must be monotone and normalized. Positive

superhomogeneity follows from the fact that for all ϕ ∈ B0(Σ,K ) and α ≥ 1, we have

Φαϕ ⊆Φϕ. Indeed, these inclusions imply that

I (αϕ) = min
J∈Φαϕ

J (αϕ) =α min
J∈Φαϕ

J (ϕ) ≥αmin
J∈Φϕ

J (ϕ) =αI (ϕ).

The proof of (iii) implies (i) is analogous upon observing thatΨϕ ⊆Ψαϕ.

PROPOSITION 18. Fix a convex K ⊆Rwith minK = 0 and a continuous map I : B0(Σ,K ) →
R. Then, the following are equivalent

(i) I is monotone, normalized, and positively superhomogeneous.

(ii) For all ϕ ∈ B0(Σ,K ), there exists a set Dϕ of upper semicontinuous and quasiconcave
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d : △(S) → [0,∞],

I (ϕ) = max
d∈Dϕ

inf
p∈△(S)

∫
Sϕdp

d(p)
.

Moreover, maxd∈Dk infp∈△(S) k/d(p) = k for all k ∈ K and Dϕ1 ⊆ Dϕ2 for all ϕ2 ≥ϕ1

in B0(Σ,K ).

Proof. By Proposition 17, for all ϕ ∈ B0(Σ,K ), there exists a family Ψϕ of monotone,

superlinear functionals, mapping from B0(Σ,K ) to R, such that

I (ϕ) = max
H∈Ψϕ

H(ϕ).

Moreover, maxH∈Ψϕ H(k) = k for all k ∈ K , andΨϕ1 ⊆Ψϕ2 for all ϕ2 ≥ϕ1 in B0(Σ,K ). Fix

ϕ ∈ B0(Σ,K ). Each H ∈Ψϕ is real-valued, and, being monotone and superlinear, also

continuous, and hence, by Theorem 36 in Cerreia-Vioglio et al. (2011c),

H(ψ) = inf
p∈△(S)

GH

(∫
S
ψdp, p

)
for all ψ ∈ B0(Σ,K ). By positive homogeneity of H , Lemma 8 yields that GH is also

positively homogeneous in the first entry, and hence

H(ψ) = inf
p∈△(S)

∫
S
ψdpGH (1, p)

for all ψ ∈ B0(Σ,K ). Given that H is real-valued, it follows that there must exist p ∈△(S)

such that GH (1, p) <∞. Define dH : △(S) → [0,∞] as dH (p) = 1/GH (1, p). By the previous

observation, there must exist p ∈△(S) such that dH (p) > 0. Since H ∈Ψϕ is monotone,

superlinear, by Lemmas 31 and 32 in Cerreia-Vioglio et al. (2011c), GH is quasiconvex

and lower semicontinuous.27 It follows that, for all t ∈R,

{p ∈△(S) : dH (p) ≤ t } = {p ∈△(S) : GH (1, p) ≥ 1/t }

are closed and convex for all t ≥ 0. Thus, dH is quasiconcave and upper semicontinuous.

27This claim is slightly more subtle, indeed notice that B0(Σ,K ) here is not lower open. Though, since
each H is monotone and superlinear, it admits a monotone, lower semicontinuous, and positively homoge-
neous extension, say H̄ , over the whole B0(Σ). The GH we consider here should actually be GH̄ which, by
the continuity of H̄ , is lower semicontinuous by Lemma 32 in Cerreia-Vioglio et al. (2011c).
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Letting Dϕ = {dH : H ∈Ψϕ}, we have that

I (ϕ) = max
d∈Dϕ

inf
p∈△(S)

∫
Sϕdp

d(p)
.

By the normalization of I we have maxd∈Dk minp∈△(S) k/d(p) = k for all k ∈ K . Moreover,

Dϕ1 ⊆ Dϕ2 for all ϕ2 ≥ ϕ1 in B0(Σ,K ), because for all such ϕ1,ϕ2 ∈ B0(Σ,K ), we have

Ψϕ1 ⊆ Ψϕ2 . The converse is proved using the same exact steps of (iii) implies (i) in

Proposition 17.

B Proofs of the results in the main text

Proof of Lemma 1. The if part is straightforward. Therefore, we prove the only if part. The

existence of an affine u follows from Theorem 8 in Herstein and Milnor (1953). Moreover,

by Proposition 1 in Cerreia-Vioglio et al. (2011a) there exists a continuous, monotone,

and normalized functional I : B0(Σ.u(X )) →R such that I ◦u represents ≿. The rest of the

claim follows from Proposition 10.

B.1 Absolute ambiguity attitudes

The proofs of the results concerning absolute ambiguity attitudes are based on the

following result which generalizes Lemma 3 in Xue (2020). For any subset K ⊆R, denote

by intK the interior of K .

LEMMA 9. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA, and exhibits decreasing absolute ambiguity aversion.

(ii) There exist an affine function u : X →R and a continuous, monotone, normalized,

and constant superadditive functional I : B0(Σ,u(X )) →R such that, for all f , g ∈F ,

f ≿ g ⇐⇒ I (u( f )) ≥ I (u(g )).

Proof. The if part is straightforward. We prove the only if part. In particular, the existence

of an affine u follows from Theorem 8 in Herstein and Milnor (1953). Since u is unique up-

to positive affine transformations, it is without loss of generality to assume that 0 ∈ intu(X )

and denote by x0 ∈ X the element such that u(x0) = 0. Moreover, by Proposition 1

in Cerreia-Vioglio et al. (2011a) there exists a continuous, monotone, and normalized
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functional I : B0(Σ,u(X )) → R such that I ◦u represents ≿. We now show the constant

superadditivity of I . Since I ◦u represents ≿, decreasing absolute ambiguity aversion

yields

I (αϕ+ (1−α)u(x0)) ≥ u(αx + (1−α)x0) =⇒ I (αϕ+ (1−α)k) ≥αu(x)+ (1−α)k (12)

for all α ∈ (0,1), k ∈ u(X ) with k ≥ 0, ϕ ∈ B0(Σ,u(X )), and x ∈ X . Suppose that, for some

α ∈ (0,1), k ∈ u(X )∩R+, and ϕ ∈ B0(Σ,u(X )), we have that

I (αϕ+ (1−α)k) < I (αϕ)+ (1−α)k. (13)

Notice that since I is monotone and normalized and u(X ) is convex, I (αϕ) ∈αu(X ) as

αϕ(s) ∈ αu(X ) for all s ∈ S. Therefore, there exists x ∈ X , such that I (αϕ) = αu(x) and,

since u is affine, I (αϕ) = u(αx + (1−α)x0). Then, by (12) and (13)

I (αϕ+ (1−α)u(x0)) < u(αx + (1−α)x0) = I (αϕ) = I (αϕ+ (1−α)u(x0))

a contradiction. Thus, by Lemma 3 in Appendix A, I is constant superadditive.

Proof of Theorem 1. The only if part follows by Lemma 9 and Proposition 12 in Appendix

A. For the if part define I : B0(Σ,u(X )) →R as

I (ϕ) = max
G∈G

inf
p∈△(S)

G

(∫
ϕdp, p

)
for allϕ ∈ B0(Σ,K ). Since G is linearly continuous, we have that I is continuous. Moreover,

I is normalized as maxG∈G infp∈△(S) G(k, p) for all k ∈ u(X ). Since each G ∈ G is mono-

tone and constant superadditive in the first argument, we have that I is monotone and

constant superadditive. Thus, by Lemma 9, ≿ is an MBA preference relation exhibiting

decreasing absolute ambiguity aversion.

Proof of Proposition 1. It follows by Lemma 9 and Proposition 14 in Appendix A.

B.2 Relative ambiguity attitudes

LEMMA 10. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA, admits a worst consequence, and exhibits decreasing relative ambiguity

aversion.
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(ii) There exist an affine function u : X →Rwith 0 = minu(X ), and a continuous, mono-

tone, normalized, and positively superhomogeneous functional I : B0(Σ,u(X )) →R

such that, for all f , g ∈F ,

f ≿ g ⇐⇒ I (u( f )) ≥ I (u(g )).

Proof. We start with the if part. Since 0 = minu(X ) and I is continuous, monotone, and

normalized we have that ≿ is an MBA preference admitting a worst consequence, say

x∗. Therefore, we prove that ≿ satisfies decreasing relative ambiguity aversion. To this

end suppose that α f + (1−α)x∗ ≿ αy + (1−α)x∗ for some α ∈ (0,1], f ∈ F , and y ∈ X .

Then, since u(x∗) = 0, u is affine, and I is normalized we have I (αu( f )) ≥αu(y). Since I

is positively superhomogeneous, we have that γ 7→ I (γu( f ))/γ is increasing in (0,1], and

hence for all β ∈ [α,1] we have I (βu( f )) ≥βu(y). This yields

I (u(β f + (1−β)x∗)) = I (βu( f )) ≥βu(y) = u(βy + (1−β)x∗)

and hence β f + (1−β)x∗ ≿βy + (1−β)x∗.

We now prove the only if part. Analogously to the proofs of Lemmas 1 and 9 there exists

an affine u and a continuous, monotone, and normalized functional I : B0(Σ,u(X )) →R

such that I ◦u represents ≿. We are left to show the positively superhomogeneity of I .

First of all, since I ◦u represents ≿, decreasing relative ambiguity aversion implies that

I (αϕ+(1−α)u(x∗)) ≥ u(αx+(1−α)x∗) =⇒ I (βϕ+(1−β)u(x∗)) ≥ u(βx+(1−β)x∗) (14)

for all α,β ∈ (0,1] with α ≤ β, ϕ ∈ B0(Σ,u(X )), x ∈ X . By the affinity of u, (14) can be

rewritten as

I (αϕ) ≥αk =⇒ I (βϕ) ≥βk

for all α,β ∈ (0,1] with α ≤ β and k ∈ u(X ). Since I (B0(Σ,u(X ))) ⊆ u(X ), it follows that

γ 7→ I (γϕ)/γ is increasing in (0,1], and hence

I (γϕ) ≤ γI (ϕ)

for all γ ∈ (0,1] and ϕ ∈ B0(Σ,u(X )), showing the statement.

Proof of Theorem 2. The only if part follows by Lemma 10 and Proposition 16 in Appendix
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A. The if part is analogous to the proof of Theorem 1 substituting constant superadditivity

with positive superhomogeneity.

Proof of Proposition 2. It follows by Lemma 10 and Proposition 18 in Appendix A.

B.3 Examples 1 and 3

We first report a fairly standard preliminary result. The points 1 and 2 below are due to

Marinacci and Montrucchio (2010) (see Appendix C therein).

LEMMA 11. If K ⊆ R is convex and φ : K → R is strictly increasing, continuous, concave,

then Iq : B0(Σ,K ) →R is continuous, normalized, monotone, and quasiconcave for q ∈Q.

Moreover

(i) If K = [0,∞) and φ is twice differentiable in (0,∞) and DARA, then Iq is constant

superadditive.

(ii) If K = [0,∞) and φ is twice differentiable in (0,∞) and DRRA, then Iq is positively

superhomogeneous.

Proof. Since φ is strictly increasing, monotonicity and normalization are immediate. As

per continuity, suppose that ψn →ψ. Then, since φ is continuous we have that φ(ψn) →
φ(ψ) pointwise, and by the monotonicity of φ, we have that |φ(ψn)| ≤φ(∥ψn∥∞) for all

n ∈N. Since ∥ψn∥∞ →∥ψ∥∞, we have that there exists K > 0 such that supn∥ψn∥∞ ≤ K .

Thus, for all n ∈N, we have that |φ(ψn)| ≤ φ(K ). Then, by the dominated convergence

theorem, we have that ∫
φ(ψn)dq →

∫
φ(ψ)dq.

Since, φ−1 is also continuous, it follows that Iq (ψn) → Iq (ψ), proving the continuity.

Moreover, since φ−1 is strictly increasing and φ is concave, we have that

Iq (αϕ+ (1−α)ψ) =φ−1
(∫

φ(αϕ+ (1−α)ψ)dq

)
≥φ−1

(∫
αφ(ϕ)+ (1−α)φ(ψ)dq

)
≥ min

{
φ−1

(∫
φ(ϕ)dq

)
,φ−1

(∫
φ(ψ)dq

)}
= min

{
Iq (ϕ), Iq (ψ)

}
for all α ∈ [0,1], and ϕ,ψ ∈ B0(Σ,K ), where the last inequality follows from the fact that

being monotone φ−1 is also quasiconcave.
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Points (i) and (ii) follow from Marinacci and Montrucchio (2010) Theorem 12 and

Corollary 1 (see also Proposition 6 therein), respectively. Their proofs are presented in a

finite state space, though this is not necessary for the argument.28 This concludes the

proof.

We say that a function G :R×△(S) → R̄ is linearly continuous if the map

ϕ 7→ inf
p∈△(S)

G

(∫
ϕdp, p

)
is continuous.

LEMMA 12. For all q ∈Q, there exists a linearly continuous Gq :R×△(S) → R̄monotone

in the first entry, quasiconvex, and such that for all ϕ ∈ B0(Σ,K )

Iq (ϕ) = inf
p∈△(S)

Gq

(∫
ϕdp, p

)
.

Moreover,

(i) If φ is DARA, then Gq is constant superadditive in the first argument.

(ii) If φ is DRRA, then Gq is positively superhomogeneous in the first argument.

Proof. By Lemma 11, we have that each Iq is continuous, normalized, monotone, and

quasiconcave. Therefore, by Theorem 36 in Cerreia-Vioglio et al. (2011c), we have that for

all ϕ ∈ B0(Σ,K ),

Iq (ϕ) = inf
p∈△(S)

Gq

(∫
ϕdp, p

)
where Gq (t , p) = sup

{
Iq (ϕ) :ϕ ∈ B0(Σ,K ) and

∫
ϕdp ≤ t

}
for all (t , p) ∈R×△(S). Follow-

ing the results in Cerreia-Vioglio et al. (2011c) we have that Gq is monotone in the first

entry, quasiconvex, and such that for all k ∈ K , infp∈△(S) Gq (k, p) = k. Since Iq is continu-

ous, we have that Gq is linearly continuous. Moreover,

(i) If φ is DARA, by Lemma 11, we have that Iq is constant superadditive, and hence by

Proposition 8, we have that Gq is constant superadditive.

(ii) If φ is DRRA, by Lemma 11, we have that Iq is positively superhomogeneous, and

hence by Proposition 9, we have that Gq is positively superhomogeneous.

28The details are available upon request.
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These conclude the proof.

By Lemma 11 and 12, MBA preferences ≿ represented by f 7→ maxq∈Q Iq (u( f )) satisfy:

(i) if φ is DARA, then ≿ satisfies the conditons of Theorem 1; (ii) if φ is DRRA, then ≿

satisfies the conditions of Theorem 2. We provide two examples of functionsφ : [0,∞) →R

that satisfy these hypotheses:

• φ(t ) =p
t for all t ≥ 0, is strictly increasing, continuous, concave, and DARA. To see

the latter, notice that

−φ
′′(t )

φ′(t )
= 1

2t
,

a (strictly) decreasing function.

• φ(t ) =p
t + t for all t ≥ 0, is strictly increasing, continuous, concave, and DRRA. To

see the latter, notice that, for all t > 0,

−t
φ′′(t )

φ′(t )
= 1

4
p

t +2

which is decreasing in t .

B.4 Remark 2

PROPOSITION 19. Let φ : [1,∞) →R strictly increasing, twice differentiable on (1,∞), and

concave and suppose that Σ is non-trivial. The functional Iφ,µ : B0(Σ, [1,∞)) →R defined

as

Iφ,µ(ϕ) =φ−1
(∫

φ
(∫

ϕdp
)
dµ

)
for all ϕ ∈ B0(Σ, [1,∞)) is positively superhomogeneous for all countably additive probabil-

ities µ over △σ(S) if and only if φ is DRRA.

Proof. Fix a countable additive µ over △σ(S). First we prove that Iφ,µ is positively super-

homogeneous if and only if Îϕ,µ defined as

Îφ,µ :ϕ 7→ log

(
φ−1

(∫
φ

(∫
eϕdp

)
dµ

))
is constant superadditive. First suppose that Iφ,µ is positively superhomogeneous. For all
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ϕ ∈ B0(Σ, [0,∞)) and k ≥ 0, we have that

Îφ,µ(ϕ+k) = log

(
φ−1

(∫
φ

(∫
eϕ+k dp

)
dµ

))
= log

(
φ−1

(∫
φ

(∫
eϕek dp

)
dµ

))
≥ log

(
ekφ−1

(∫
φ

(∫
eϕdp

)
dµ

))
= log

(
φ−1

(∫
φ

(∫
eϕdp

)
dµ

))
+k = Îφ,µ(ϕ)+k.

Therefore, Îφ,µ is constant superadditive. Conversely, suppose that Îφ,µ is constant super-

additive. Then, we have that for all α≥ 1 and ϕ ∈ B0(Σ, [1,∞)),

Iφ,µ(αϕ) = e Îφ,µ(log(αϕ)) = e Îφ,µ(log(α)+log(ϕ)) ≥ e Îφ,µ(log(ϕ))e log(α) =αe Îφ,µ(log(ϕ)) =αIφ,µ(ϕ)

Therefore, Iφ,µ is positively superhomogeneous. In particular, notice that Îφ,µ = Iφ̂,µ with

φ̂(t ) =φ(e t ) for all t ≥ 0. Notice that

φ̂′(t ) = e tφ′(e t ) and φ̂′′(t ) = e tφ′(e t )+e2tφ′′(e t ),

which implies

φ̂′′(t ) ≤ 0 ⇔φ′(e t ) ≤−e tφ′′(e t ) ⇔ 0 ≤−e t φ
′′(e t )

φ′(e t )
⇔ 0 ≤−φ

′′(e t )

φ′(e t )

Since φ is strictly increasing, we have φ′(e t ) > 0; since φ is concave, we have φ′′(e t ) ≤ 0,

and hence φ̂′′(t) ≤ 0 for all t . Therefore, φ̂ is strictly increasing and concave. Moreover,

by Proposition 7 in Xue (2020),29 Îφ,µ is constant superadditive for all countable additive

probabilitiesµ in △σ(S) if and only if φ̂ is DARA. In turn, φ̂ is DARA if and only ifφ is DRRA.

Therefore, connecting all the proved equivalences, Iφ,µ is positively superhomogeneous

if and only if φ is DRRA.

B.5 Risk sharing

LEMMA 13. Let ≿ be a binary relation over F . The following are equivalent

(i) ≿ is MBA, admits a worst consequence, and exhibits decreasing absolute ambiguity

aversion and increasing relative ambiguity aversion.

29Notice that in the proof Xue (2020) uses the full unboundedness requirement only for the preferential
characterization of constant superadditivity in terms of decreasing absolute ambiguity aversion. The rest
of the proof, and in particular the cited results from Cerreia-Vioglio et al. (2011c), do not depend on the full
unboundedness condition.
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(ii) There exist an affine function u : X →Rwith minu(X ) = 0 and a continuous, mono-

tone, normalized, constant superadditive, and positively subhomogeneous func-

tional I : B0(Σ,u(X )) →R such that, for all f , g ∈F ,

f ≿ g ⇐⇒ I (u( f )) ≥ I (u(g )).

Moreover, the same statement holds if we require ≿ to satisfy non-constant decreasing

absolute ambiguity aversion and non-constant increasing relative ambiguity aversion,

along with strict constant superadditivity and strict positively subhomogeneity.

Proof. The equivalence between the two points follows immediately by combining

Lemma 9 and Lemma 10, adapting the latter specularly to increasing relative ambi-

guity aversion. Therefore, we only need to prove that non-constant decreasing absolute

ambiguity aversion is equivalent to the strict constant superadditivity of I , and the analo-

gous statement for non-constant increasing relative ambiguity aversion and the strict

positive subhomogeneity of I . The proofs of such equivalences are omitted for the sake

of brevity as they are completely analogous (up to changing few weak signs with their

strict counterparts) to the proofs of the lemmas mentioned above.30

Proof of Proposition 3. Let x ∈ R++ and g ̸= x in RS+ with V (g ) ≥ V (x). Then, for all λ ∈
[0,1] it holds that

V (λg + (1−λ)x) ≥V (λg )+ (1−λ)x ≥λV (g )+ (1−λ)x ≥λV (x)+ (1−λ)V (x) =V (x),

with at least one of the inequalities being strict by assumption. Since V is nice, the result

follows by Proposition 2 (points (2) and (3)) in Ghirardato and Siniscalchi (2018b).

Proof of Corollary 1. The result follows by a direct application of Theorem 3 by Ghirardato

and Siniscalchi (2018b) and Proposition 3.

Acknowledgement

We are grateful to Xiaoyu Cheng, Federico Echenique, Mira Frick, Bruno de Albuquerque

Furtado, Itzhak Gilboa, Paolo Ghirardato, Simon Grant, Faruk Gul, Brian Hill, Ryota Iijima,

Peter Klibanoff, Massimo Marinacci, Stefania Minardi, Ivan Moscati, Sujoy Mukerji, Pietro

30The details are available upon request.

57



Ortoleva, Daniele Pennesi, and Luciano Pomatto for their insightful comments. We thank

the audience at DTEA 2024. We are particularly indebted to Simone Cerreia-Vioglio and

Fabio Maccheroni for many discussions and suggestions.

References

ANSCOMBE, F. J. AND R. J. AUMANN (1963): “A definition of subjective probability,” Annals

of Mathematical Statistics, 34, 199–205.

BAILLON, A., O. L’HARIDON, AND L. PLACIDO (2011): “Ambiguity models and the Machina

paradoxes,” American Economic Review, 101, 1547–1560.

BAILLON, A. AND L. PLACIDO (2019): “Testing constant absolute and relative ambiguity

aversion,” Journal of Economic Theory, 181, 309–332.

BEKER, P. F. AND J. Y. CHEN (2023): “If You’re NOT So Smart, Why Are You Rich? Robust

Market Selection with General Recursive Preferences,” available at SSRN 4616770.

BERGER, L. (2014): “Precautionary saving and the notion of ambiguity prudence,” Eco-

nomics letters, 123, 248–251.

——— (2016): “The impact of ambiguity and prudence on prevention decisions,” Theory

and Decision, 80, 389–409.

BILLOT, A., A. CHATEAUNEUF, I. GILBOA, AND J.-M. TALLON (2000): “Sharing Beliefs:

Between Agreeing and Disagreeing,” Econometrica, 68, 685–694.

CASTAGNOLI, E., G. CATTELAN, F. MACCHERONI, C. TEBALDI, AND R. WANG (2022):

“Star-shaped risk measures,” Operations Research, 70, 2637–2654.

CERREIA-VIOGLIO, S., P. GHIRARDATO, F. MACCHERONI, M. MARINACCI, AND M. SINIS-

CALCHI (2011a): “Rational preferences under ambiguity,” Economic Theory, 48, 341–

375.

CERREIA-VIOGLIO, S., G. LANZANI, AND R. CORRAO (2024): “Nonlinear Fixed Points and

Stationarity: Economic Applications,” Working Paper.

CERREIA-VIOGLIO, S., F. MACCHERONI, AND M. MARINACCI (2022): “Ambiguity aversion

and wealth effects,” Journal of Economic Theory, 199, 1–43.

58



CERREIA-VIOGLIO, S., F. MACCHERONI, M. MARINACCI, AND L. MONTRUCCHIO (2011b):

“Complete monotone quasiconcave duality,” Mathematics of Operations Research, 36,

321–339.

——— (2011c): “Uncertainty averse preferences,” Journal of Economic Theory, 146, 1275–

1330.

CERREIA-VIOGLIO, S., F. MACCHERONI, M. MARINACCI, AND A. RUSTICHINI (2014):

“Niveloids and their extensions: risk measures on small domains,” Journal of Mathe-

matical Analysis and Applications, 413, 343–360.

CHAMBERS, R. G., S. GRANT, B. POLAK, AND J. QUIGGIN (2014): “A two-parameter model

of dispersion aversion,” Journal of Economic Theory, 150, 611–641.

CHANDRASEKHER, M., M. FRICK, R. IIJIMA, AND Y. LE YAOUANQ (2022): “Dual-self repre-

sentations of ambiguity preferences,” Econometrica, 90, 1029–1061.

CHATEAUNEUF, A. AND J. H. FARO (2009): “Ambiguity through confidence functions,”

Journal of Mathematical Economics, 45, 535–558.

CHERBONNIER, F. AND C. GOLLIER (2015): “Decreasing aversion under ambiguity,” Jour-

nal of Economic Theory, 157, 606–623.

CLARKE, F. H. (1983): Optimization and nonsmooth analysis, Canadian Mathematical

Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, a

Wiley-Interscience Publication.

DAL MASO, G. (1993): An introduction to Γ-convergence, vol. 8 of Progress in Nonlinear

Differential Equations and their Applications, Birkhäuser Boston, Inc., Boston, MA.

DRÈZE, J. H. (1990): Essays on economic decisions under uncertainty, Cambridge Univer-

sity Press, Cambridge.

ELLSBERG, D. (1961): “Risk, ambiguity, and the Savage axioms,” The Quarterly Journal of

Economics, 75, 643–669.

GHIRARDATO, P., F. MACCHERONI, AND M. MARINACCI (2004): “Differentiating ambiguity

and ambiguity attitude,” Journal of Economic Theory, 118, 133–173.

59



GHIRARDATO, P. AND M. SINISCALCHI (2018a): “Risk sharing in the small and in the large,”

Journal of Economic Theory, 175, 730–765.

——— (2018b): “Risk Sharing in the Small and in the Large,” Working Paper.

GILBOA, I. AND D. SCHMEIDLER (1989): “Maxmin Expected Utility with Non-Unique

Prior,” Journal of Mathematical Economics, 18, pp–141.

GRANT, S. AND B. POLAK (2013): “Mean-dispersion preferences and constant absolute

uncertainty aversion,” Journal of Economic Theory, 148, 1361–1398.

GRANT, S., B. POLAK, AND T. STRZALECKI (2009): “Second-order expected utility,” avail-

able at SSRN 2328936.

GUERDJIKOVA, A. AND E. SCIUBBA (2015): “Survival with ambiguity,” Journal of Economic

Theory, 155, 50–94.

HAN, X., Q. WANG, R. WANG, AND J. XIA (2022): “Cash-subadditive risk measures without

quasi-convexity,” available at https: // arxiv. org/ abs/ 2110. 12198 .

HANSEN, L. P. AND T. J. SARGENT (2001): “Robust control and model uncertainty,” Ameri-

can Economic Review, 91, 60–66.

HARA, C., S. MUKERJI, F. RIEDEL, AND J.-M. TALLON (2024): “Sharing Model Uncertainty,”

Working Paper.

HERSTEIN, I. N. AND J. MILNOR (1953): “An axiomatic approach to measurable utility,”

Econometrica, 21, 291–297.

HILL, B. (2013): “Confidence and decision,” Games and economic behavior, 82, 675–692.

KLIBANOFF, P., M. MARINACCI, AND S. MUKERJI (2005): “A smooth model of decision

making under ambiguity,” Econometrica, 73, 1849–1892.

LAEVEN, R. J., E. R. GIANIN, AND M. ZULLINO (2023): “Dynamic return and star-shaped

risk measures via BSDEs,” available at https: // arxiv. org/ abs/ 2307. 03447 .

MACCHERONI, F., M. MARINACCI, AND D. RUFFINO (2013): “Alpha as ambiguity: Robust

mean-variance portfolio analysis,” Econometrica, 81, 1075–1113.

60

https://arxiv.org/abs/2110.12198
https://arxiv.org/abs/2307.03447


MACCHERONI, F., M. MARINACCI, AND A. RUSTICHINI (2006): “Ambiguity aversion, robust-

ness, and the variational representation of preferences,” Econometrica, 74, 1447–1498.

MACHINA, M. J. (2009): “Risk, ambiguity, and the rank-dependence axioms,” American

Economic Review, 99, 385–392.

MARINACCI, M. AND L. MONTRUCCHIO (2010): “Unique solutions for stochastic recursive

utilities,” Journal of Economic Theory, 145, 1776–1804.

MIAO, J. AND A. RIVERA (2016): “Robust contracts in continuous time,” Econometrica, 84,

1405–1440.

MILGROM, P. AND N. STOKEY (1982): “Information, trade and common knowledge,”

Journal of Economic theory, 26, 17–27.

NEILSON, W. S. (2010): “A simplified axiomatic approach to ambiguity aversion,” Journal

of Risk and uncertainty, 41, 113–124.

OSAKI, Y. AND H. SCHLESINGER (2014): “Precautionary saving and ambiguity,” Working

Paper.

RIGOTTI, L., C. SHANNON, AND T. STRZALECKI (2008): “Subjective beliefs and ex ante

trade,” Econometrica, 76, 1167–1190.

SCHMEIDLER, D. (1989): “Subjective probability and expected utility without additivity,”

Econometrica, 571–587.

SINISCALCHI, M. (2009): “Vector expected utility and attitudes toward variation,” Econo-

metrica, 77, 801–855.

STRZALECKI, T. (2013): “Temporal resolution of uncertainty and recursive models of

ambiguity aversion,” Econometrica, 81, 1039–1074.

WANG, F. (2019): “Comparative ambiguity attitudes,” Working Paper.

XIA, J. (2020): “Decision Making under Uncertainty: A Game of Two Selves,” available at

https: // arxiv. org/ pdf/ 2012. 07509 .

XUE, J. (2020): “Preferences with changing ambiguity aversion,” Economic Theory, 69,

1–60.

61

https://arxiv.org/pdf/2012.07509

	Introduction
	Mathematical preliminaries
	Monotone, Bernoulli, Archimedean preferences
	Independence notions and ambiguity attitudes

	Absolute ambiguity attitudes
	Relative ambiguity attitudes
	A risk sharing application
	Appendices
	Mathematical appendix
	Toolkit lemmas
	Extension results
	Envelope representations
	Semicontinuity
	Quasiconvex duality
	Monotone and normalized functionals
	Constant superadditivity
	Positive superhomogeneity

	Proofs of the results in the main text
	Absolute ambiguity attitudes
	Relative ambiguity attitudes
	Examples 1 and 3
	Remark 2
	Risk sharing



